Orbit decidability and the conjugacy problem in groups

Enric Ventura

Departament de Matemàtica Aplicada III

Universitat Politècnica de Catalunya

Algebra Seminar, Oxford

February 25th, 2014.

Outline

- Orbit decidability
- 2 Free group and relatives
- 3 Orbit undecidable subgroups
- 4 Connection with the Conjugacy Problem
- 5 Applications

Outline

- Orbit decidability
- 2 Free group and relatives
- Orbit undecidable subgroups
- Connection with the Conjugacy Problem
- 6 Applications

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \operatorname{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit

- Geometry: take X = space. A = action:
- Algebra: take X = algebraic structure, $A \subseteq End(X)$;
 - Our case: X = G group, $A \subseteq \text{End}(G)$, $A \subseteq \text{Aut}(G)$.

Definition

1. Orbit decidability

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \text{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observatior

O.D. is membership in a given A-orbit.

- Geometry: take X = space, A = action;
- Algebra: take X = algebraic structure, $A \subseteq End(X)$;
 - Our case: X = G group, $A \subseteq \text{End}(G)$, $A \subseteq \text{Aut}(G)$.

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \text{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.

- Geometry: take X = space. A = action:
- Algebra: take X = algebraic structure, $A \subseteq End(X)$;
 - Our case: X = G group, $A \subseteq \text{End}(G)$, $A \subseteq \text{Aut}(G)$.

Definition

Orbit decidability

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \text{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.

- Geometry: take X = space, A = action;
- Algebra: take X = algebraic structure, $A \subseteq \operatorname{End}(X)$

Definition

Orbit decidability

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \text{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.

- Geometry: take X = space, A = action;
- Algebra: take X = algebraic structure, $A \subseteq End(X)$;
 - Our case: X = G group, $A \subseteq \text{End}(G)$, $A \subseteq \text{Aut}(G)$

Definition

Let X be a set. A collection of maps $A \subseteq \operatorname{Map}(X,X)$ is said to be orbit decidable (O.D.) if there is an algorithm s.t., given $x,y \in X$, it decides whether $x\alpha = y$ for some $\alpha \in A$ (and, if so, finds such an α).

Definition

For X, $A \subseteq \text{Map}(X, X)$, the A-orbit of $x \in X$ is $\mathcal{O}(x) = \{x\alpha \mid \alpha \in A\}$.

Observation

O.D. is membership in a given A-orbit.

- Geometry: take X = space, A = action;
- Algebra: take X = algebraic structure, $A \subseteq End(X)$;
 - Our case: X = G group, $A \subseteq End(G)$, $A \subseteq Aut(G)$.

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_r$, whether there exists $\alpha \in \operatorname{Aut}(F_r)$ s.t. $u\alpha = v$.

In other words: $Aut(F_r)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.

All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the O.D. for $A = Inn(G) \leqslant Aut(G)$.

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_r$, whether there exists $\alpha \in \operatorname{Aut}(F_r)$ s.t. $u\alpha = v$.

In other words: $Aut(F_r)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.

All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the O.D. for $A = Inn(G) \leqslant Aut(G)$.

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_r$, whether there exists $\alpha \in \operatorname{Aut}(F_r)$ s.t. $u\alpha = v$.

In other words: $Aut(F_r)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.

All these are instances of the Orbit Decidability problem.

Observatior

The conjugacy problem for G is just the O.D. for $A = Inn(G) \leqslant Aut(G)$

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_r$, whether there exists $\alpha \in \operatorname{Aut}(F_r)$ s.t. $u\alpha = v$.

In other words: $Aut(F_r)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.

All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the O.D. for $A = Inn(G) \leq Aut(G)$

Theorem (Whitehead 1936)

There is an algorithm to decide, given $u, v \in F_r$, whether there exists $\alpha \in \operatorname{Aut}(F_r)$ s.t. $u\alpha = v$.

In other words: $Aut(F_r)$ is O.D.

Variations with tuples of words, subgroups, tuples of subgroups, modulo conjugation, etc.

All these are instances of the Orbit Decidability problem.

Observation

The conjugacy problem for G is just the O.D. for $A = Inn(G) \leq Aut(G)$.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = uA if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Proposition (Bogopolski-Martino-V., 2008

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = uA if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Proposition (Bogopolski-Martino-V., 2008

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = uA if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D

Observation (folklore)

The full group $\operatorname{Aut}(\mathbb{Z}^d) = \operatorname{GL}_d(\mathbb{Z})$ is orbit decidable.

Proof. For $u, v \in \mathbb{Z}^d$, there exists $A \in GL_d(\mathbb{Z})$ such that v = uA if and only if $gcd(u_1, \dots, u_d) = gcd(v_1, \dots, v_d)$.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $GL_d(\mathbb{Z})$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

- Given $A \in GL_d(\mathbb{Z})$, $u, v \in \mathbb{Z}^d$, want to decide wether $uA^n = v$ for some $n \in \mathbb{N}$.
- Keep computing u, uA, uA², uA³, ... and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of uAⁿ to E_{λ} grows faster than all other projections
- So we can compute n_0 such that either u, uA, uA^2 , uA^3 , ..., uA^{n_0} hits v, or either $uA^n \neq v$ for all n.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

- Given $A \in GL_d(\mathbb{Z})$, $u, v \in \mathbb{Z}^d$, want to decide wether $uA^n = v$ for some $n \in \mathbb{N}$.
- Keep computing u, uA, uA², uA³, ... and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of uAⁿ to E_{λ} grows faster than all other projections
- So we can compute n_0 such that either u, uA, uA^2 , uA^3 , ..., uA^{n_0} hits v, or either $uA^n \neq v$ for all n.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

- Given $A \in GL_d(\mathbb{Z})$, $u, v \in \mathbb{Z}^d$, want to decide wether $uA^n = v$ for some $n \in \mathbb{N}$.
- Keep computing u, uA, uA², uA³, ... and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of uA^n to E_{λ} grows faster than all other projections.
- So we can compute n_0 such that either u, uA, uA^2 , uA^3 ,..., uA^{n_0} hits v, or either $uA^n \neq v$ for all n.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

- Given $A \in GL_d(\mathbb{Z})$, $u, v \in \mathbb{Z}^d$, want to decide wether $uA^n = v$ for some $n \in \mathbb{N}$.
- Keep computing u, uA, uA², uA³, ... and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of uA^n to E_{λ} grows faster than all other projections.
- So we can compute n_0 such that either u, uA, uA^2 , uA^3 ,..., uA^{n_0} hits v, or either $uA^n \neq v$ for all n.

Proposition (linear algebra)

For $A \in GL_d(\mathbb{Z})$, the subgroup $\langle A \rangle \leqslant GL_d(\mathbb{Z})$ is O.D.

- Given $A \in GL_d(\mathbb{Z})$, $u, v \in \mathbb{Z}^d$, want to decide wether $uA^n = v$ for some $n \in \mathbb{N}$.
- Keep computing u, uA, uA^2 , uA^3 , ... and compare with v.
- Denote λ the eigenvalue of A with maximum modulus. The projection of uA^n to E_{λ} grows faster than all other projections.
- So we can compute n_0 such that either u, uA, uA^2 , uA^3 , ..., uA^{n_0} hits v, or either $uA^n \neq v$ for all n.

Outline

- Orbit decidability
- Pree group and relatives
- Orbit undecidable subgroups
- Connection with the Conjugacy Problem
- 6 Applications

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = u\varphi^n$ for some $n \in \mathbb{Z}$.

Proof

- Same idea as before: there is a computable n_0 such that either $u, u\varphi, u\varphi^2, u\varphi^3, \dots, u\varphi^{n_0}$ hits v, or either $u\varphi^n \neq v$ for all n.
- The computation of n₀ is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = u\varphi^n$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_0 such that either $u, u\varphi, u\varphi^2, u\varphi^3, \dots, u\varphi^{n_0}$ hits v, or either $u\varphi^n \neq v$ for all n.
- The computation of n₀ is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = u\varphi^n$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_0 such that either u, $u\varphi$, $u\varphi^2$, $u\varphi^3$,..., $u\varphi^{n_0}$ hits v, or either $u\varphi^n \neq v$ for all n.
- The computation of n₀ is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Theorem (Brinkmann, 2006)

Cyclic groups of $\operatorname{Aut}(F_r)$ are orbit decidable. That is, given $\varphi \in \operatorname{Aut}(F_r)$ and $u, v \in F_r$, one can decide whether $v = u\varphi^n$ for some $n \in \mathbb{Z}$.

Proof.

- Same idea as before: there is a computable n_0 such that either u, $u\varphi$, $u\varphi^2$, $u\varphi^3$,..., $u\varphi^{n_0}$ hits v, or either $u\varphi^n \neq v$ for all n.
- The computation of n₀ is quite complicated, making strong use of train-tracks.

Theorem (Brinkmann, 2006)

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{Aut}(F_r)$ (also for tuples).

This is a classical and very influential result

Proposition (Bogopolski-Martino-V., 2008

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{Aut}(F_r)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{Aut}(F_r)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Theorem (Whitehead'30)

The full group $\operatorname{Aut}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{Aut}(F_r)$ (also for tuples).

This is a classical and very influential result.

Proposition (Bogopolski-Martino-V., 2008)

Finite index subgroups of $Aut(F_r)$ are O.D.

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $Aut(F_2)$ is O.D.

Theorem (Makanin, 1982)

The full $\operatorname{End}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{End}(F_r)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_r ,

Theorem (Ciobanu–Houcine, 2010

Mon(F_r) is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some injective endomorphism $\alpha \in \text{Mon}(F_r)$ (also for tuples).

Corollary

For every f.g. $H \leqslant F_r$, Stab(H) is O.D (also for tuples, and similarly for monos and endos).

Theorem (Makanin, 1982)

The full $\operatorname{End}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{End}(F_r)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_r .

Theorem (Ciobanu–Houcine, 2010

Mon(F_r) is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some injective endomorphism $\alpha \in \text{Mon}(F_r)$ (also for tuples).

Corollary

For every f.g. $H \leq F_r$, Stab(H) is O.D (also for tuples, and similarly for monos and endos).

Theorem (Makanin, 1982)

The full $\operatorname{End}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{End}(F_r)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_r .

Theorem (Ciobanu-Houcine, 2010)

Mon(F_r) is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some injective endomorphism $\alpha \in \text{Mon}(F_r)$ (also for tuples).

Corollary

For every f.g. $H \leq F_r$, Stab(H) is O.D (also for tuples, and similarly for monos and endos).

Theorem (Makanin, 1982)

The full $\operatorname{End}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some $\alpha \in \operatorname{End}(F_r)$ (also for tuples).

Proof. It reduces to solving (a system of) equations over F_r .

Theorem (Ciobanu-Houcine, 2010)

 $\mathsf{Mon}(F_r)$ is orbit decidable. That is, given $u, v \in F_r$ one can decide whether $v = u\alpha$ for some injective endomorphism $\alpha \in \mathsf{Mon}(F_r)$ (also for tuples).

Corollary

For every f.g. $H \leq F_r$, Stab(H) is O.D (also for tuples, and similarly for monos and endos).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi \colon H \to K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.

The collection of virtual endos (resp. virtual monos, virtual autos) of F_r is O.D. (also for tuples).

Whitehead problem and variations

Definition

A virtual endomorphism of G is a homomorphism $\varphi \colon H \to K$ between finite index subgroups $H, K \leqslant_{\mathrm{fi}} G$.

Theorem (Rubió-V., w.p.)

The collection of virtual endos (resp. virtual monos, virtual autos) of F_r is O.D. (also for tuples).

Theorem (Collins, Zieschang, 1984)

Let G_1, \ldots, G_n be freely indecomposable groups with $\operatorname{Aut}(G_i)$ being O.D. Then, its free product $G = G_1 * G_2 * \cdots * G_n$ has $\operatorname{Aut}(G)$ O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012

For G torsion-free relatively hyperbolic with abelian parabolic subgroups, Aut(G) is O.D. (also for tuples).

Theorem (Collins, Zieschang, 1984)

Let G_1, \ldots, G_n be freely indecomposable groups with $Aut(G_i)$ being O.D. Then, its free product $G = G_1 * G_2 * \cdots * G_n$ has Aut(G) O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic subgroups. Aut(G) is O.D. (also for tuples).

Theorem (Collins, Zieschang, 1984)

Let G_1, \ldots, G_n be freely indecomposable groups with $Aut(G_i)$ being O.D. Then, its free product $G = G_1 * G_2 * \cdots * G_n$ has Aut(G) O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic subgroups. Aut(G) is O.D. (also for tuples).

Theorem (Collins, Zieschang, 1984)

Let G_1, \ldots, G_n be freely indecomposable groups with $Aut(G_i)$ being O.D. Then, its free product $G = G_1 * G_2 * \cdots * G_n$ has Aut(G) O.D.

Theorem (Levitt-Vogtman, 2000)

For a surface group G, Aut(G) is O.D. (also for tuples).

Theorem (Dahmani, Girardel, 2010)

For a hyperbolic group G, Aut(G) is O.D. (also for tuples).

Theorem (Kharlampovich-V., 2012)

For G torsion-free relatively hyperbolic with abelian parabolic subgroups, Aut(G) is O.D. (also for tuples).

Theorem (Day, 2013)

For G a PC group Aut(G) is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)

For $G = \mathbb{Z}^m \times F_n$, Aut(G), Mon(G) and End(G) are all O.D.

Theorem (Day, 2013)

For G a PC group Aut(G) is O.D. (also for tuples modulo conjugation).

Theorem (Delgado-V., 2013)

For $G = \mathbb{Z}^m \times F_n$, Aut(G), Mon(G) and End(G) are all O.D.

Outline

- Orbit decidability
- 2 Free group and relatives
- Orbit undecidable subgroups
- Connection with the Conjugacy Problem
- 6 Applications

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$. \square

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$. \square

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$. \square

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$.

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$. \square

Proposition (Bogopolski-Martino-V., 2008)

Let F be a group, and let $A \le B \le \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, A is $O.D. \Rightarrow MP(A, B)$ solvable.

Proof. Given
$$\varphi \in B \leq \operatorname{Aut}(F)$$
, let $w = u\varphi$ and

$$\{\phi \in B \mid u\phi = w\} = (B \cap Stab(u)) \cdot \varphi = \{\varphi\}.$$

So, u can be mapped to w by somebody in $A \Leftrightarrow \varphi \in A$. \square

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_2 \times F_2 \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group $U = \langle a_1, a_2 \mid r_1, \dots, r_m \rangle$ with unsolvable word problem, the finitely generated subgroup

$$A = \langle (a_1, a_1), (a_2, a_2), (r_1, 1), \dots, (r_m, 1) \rangle$$

= $\{(v, w) \mid v =_U w\} \leq F_2 \times F_2$

has unsolvable membership problem. Hence, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_2 \times F_2 \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group $U = \langle a_1, a_2 \mid r_1, \dots, r_m \rangle$ with unsolvable word problem, the finitely generated subgroup

$$A = \langle (a_1, a_1), (a_2, a_2), (r_1, 1), \dots, (r_m, 1) \rangle$$

= $\{(v, w) \mid v =_U w\} \leqslant F_2 \times F_2$

has unsolvable membership problem. Hence, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

Corollary (Bogopolski-Martino-V., 2008)

Let F be a group, and let $F_2 \times F_2 \simeq B \leqslant \operatorname{Aut}(F)$ and $u \in F$ be such that $B \cap \operatorname{Stab}(u) = 1$. Then, there exists f.g. $A \leqslant \operatorname{Aut}(F)$ which is orbit undecidable.

Proof. By Mihailova's construction, for every group $U = \langle a_1, a_2 \mid r_1, \dots, r_m \rangle$ with unsolvable word problem, the finitely generated subgroup

$$A = \langle (a_1, a_1), (a_2, a_2), (r_1, 1), \dots, (r_m, 1) \rangle$$

= $\{(v, w) | v =_U w\} \leq F_2 \times F_2$

has unsolvable membership problem. Hence, $A \leq \operatorname{Aut}(F)$ is orbit undecidable.

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

 $Aut(F_r)$ contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

(u = qaqbq satisfies $B \cap Stab^*(u) = 1$). Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_2 \times F_2$ in $Aut(F_3)$ via the embedding

 $(u = qaqbq \ satisfies \ B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_2 \times F_2$ in $Aut(F_3)$ via the embedding

(u = qaqbq satisfies $B \cap Stab^*(u) = 1$). Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

 $Aut(F_r)$ contains f.g. orbit undecidable subgroups, for $r \ge 3$.

Proof. Take the copy B of $F_2 \times F_2$ in $Aut(F_3)$ via the embedding

 $(u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski–Martino–V., 2008)

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

Aut(F_r) contains f.g. orbit undecidable subgroups, for $r \geqslant 3$.

Proof. Take the copy B of $F_2 \times F_2$ in Aut(F_3) via the embedding

 $(u = qaqbq \text{ satisfies } B \cap Stab^*(u) = 1)$. Now, take any Mihailova subgroup in there, $A \leq B \leq Aut(F_3)$, and A will be orbit undecidable.

Proposition (Bogopolski-Martino-V., 2008)

For free abelian groups

1. Orbit decidability

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \ Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

$$\bullet \ \langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$$

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

$$\bullet \ \langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle.$$

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \geqslant 4$.

Proof. Consider
$$F_2\simeq \langle P=\left(\begin{array}{cc}1&1\\1&2\end{array}\right),\ Q=\left(\begin{array}{cc}2&1\\1&1\end{array}\right)
angle \leq_{24} GL_2(\mathbb{Z}).$$

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

For free abelian groups

Corollary (Bogopolski-Martino-V., 2008)

 $GL_d(\mathbb{Z})$ contains f.g. orbit undecidable subgroups, for $d \ge 4$.

Proof. Consider
$$F_2 \simeq \langle P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $Q = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rangle \leq_{24} GL_2(\mathbb{Z})$.

•
$$Stab(1,0) = \{M \mid (1,0)M = (1,0)\} = \{\begin{pmatrix} 1 & 0 \\ n & \pm 1 \end{pmatrix} \mid n \in \mathbb{Z}\}.$$

•
$$\langle P, Q \rangle \cap Stab(1,0) = \langle \begin{pmatrix} 1 & 0 \\ 12 & 1 \end{pmatrix} \rangle$$
.

$$B = \langle \left(\begin{array}{c|c} P' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} Q' & 0 \\ \hline 0 & I \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & P' \end{array} \right), \, \left(\begin{array}{c|c} I & 0 \\ \hline 0 & Q' \end{array} \right) \rangle \leq GL_4(\mathbb{Z}).$$

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1,0,1,0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \operatorname{GL}_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take A ≤ B ≃ F₂ × F₂ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant \operatorname{GL}_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z})$, $d \geq 4$. \square

Proposition (Bogopolski–Martino–V., 2008

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1,0,1,0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq GL_d(\mathbb{Z})$, $d \geq 4$. \square

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1,0,1,0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Proposition (Bogopolski–Martino–V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leq \operatorname{GL}_d(\mathbb{Z}), d \geq 4$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

- Note that $B \simeq F_2 \times F_2$.
- Write u = (1, 0, 1, 0). By construction, $B \cap Stab(u) = \{Id\}$.
- Take $A \leq B \simeq F_2 \times F_2$ with unsolvable membership problem.
- By previous Proposition, $A \leqslant GL_4(\mathbb{Z})$ is orbit undecidable.
- Similarly for $A \leqslant \operatorname{GL}_d(\mathbb{Z}), d \geqslant 4$. \square

Proposition (Bogopolski-Martino-V., 2008)

Every finitely generated subgroup of $GL_2(\mathbb{Z})$ is O.D.

Question

Outline

- Orbit decidability
- 2 Free group and relatives
- Orbit undecidable subgroups
- 4 Connection with the Conjugacy Problem
- 6 Applications

Observation (Bogopolski–Martino–V., 2008)

Let F be f.g., and $A \leq_{fg} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G = A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$(\alpha_1, X_1) \cdot (\alpha_2, X_2) = (\alpha_1 \alpha_2, (X_1 \alpha_2) X_2)$$

$$(\alpha, x)^{-1} = (\alpha^{-1}, x^{-1}\alpha^{-1}).$$

For $x_1, x_2 \in F \leqslant G$, we have $x_1 \sim_G x_2 \Leftrightarrow \exists (\alpha, x) \in A \ltimes F s.t.$

$$(Id, x_2) = (\alpha, x)^{-1} \cdot (Id, x_1) \cdot (\alpha, x)$$
$$(\alpha^{-1}, x^{-1}\alpha^{-1}) \cdot (\alpha, (x_1\alpha)x)$$
$$(Id, x^{-1}(x_1\alpha)x).$$

Hence, $x_1 \sim_G x_2 \Leftrightarrow \exists \alpha \in A \text{ and } x \in F \text{ s.t. } x_2 = x^{-1}(x_1 \alpha)x$. \square

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leq_{fg} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leqslant \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G = A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$(\alpha_1, x_1) \cdot (\alpha_2, x_2) = (\alpha_1 \alpha_2, (x_1 \alpha_2) x_2)$$

 $(\alpha, x)^{-1} = (\alpha^{-1}, x^{-1} \alpha^{-1}).$

For $x_1, x_2 \in F \leqslant G$, we have $x_1 \sim_G x_2 \Leftrightarrow \exists (\alpha, x) \in A \ltimes F s.t.$

$$(Id, x_2) = (\alpha, x)^{-1} \cdot (Id, x_1) \cdot (\alpha, x)$$
$$(\alpha^{-1}, x^{-1}\alpha^{-1}) \cdot (\alpha, (x_1\alpha)x)$$
$$(Id, x^{-1}(x_1\alpha)x).$$

Hence, $x_1 \sim_G x_2 \Leftrightarrow \exists \alpha \in A \text{ and } x \in F \text{ s.t. } x_2 = x^{-1}(x_1\alpha)x$.

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leqslant_{\mathrm{fg}} \mathrm{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \mathrm{Inn}(F) \leqslant \mathrm{Aut}(F)$ is orbit decidable.

Proof. $G = A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$(\alpha_1, x_1) \cdot (\alpha_2, x_2) = (\alpha_1 \alpha_2, (x_1 \alpha_2) x_2)$$

 $(\alpha, x)^{-1} = (\alpha^{-1}, x^{-1} \alpha^{-1}).$

For $x_1, x_2 \in F \leqslant G$, we have $x_1 \sim_G x_2 \Leftrightarrow \exists (\alpha, x) \in A \ltimes F \text{ s.t.}$

$$(Id, x_2) = (\alpha, x)^{-1} \cdot (Id, x_1) \cdot (\alpha, x)$$
$$(\alpha^{-1}, x^{-1}\alpha^{-1}) \cdot (\alpha, (x_1\alpha)x)$$
$$(Id, x^{-1}(x_1\alpha)x).$$

Hence, $x_1 \sim_G x_2 \iff \exists \alpha \in A \text{ and } x \in F \text{ s.t. } x_2 = x^{-1}(x_1 \alpha)x$. \square

Observation (Bogopolski-Martino-V., 2008)

Let F be f.g., and $A \leq_{fg} \operatorname{Aut}(F)$. If $A \ltimes F$ has solvable CP, then $A \cdot \operatorname{Inn}(F) \leq \operatorname{Aut}(F)$ is orbit decidable.

Proof. $G = A \ltimes F$ contains elements $(\alpha, x) \in A \times F$ operated like

$$(\alpha_1, \mathbf{x}_1) \cdot (\alpha_2, \mathbf{x}_2) = (\alpha_1 \alpha_2, (\mathbf{x}_1 \alpha_2) \mathbf{x}_2)$$

$$(\alpha, \mathbf{x})^{-1} = (\alpha^{-1}, \mathbf{x}^{-1}\alpha^{-1}).$$

For $x_1, x_2 \in F \leqslant G$, we have $x_1 \sim_G x_2 \Leftrightarrow \exists (\alpha, x) \in A \ltimes F$ s.t.

$$(Id, x_2) = (\alpha, x)^{-1} \cdot (Id, x_1) \cdot (\alpha, x) (\alpha^{-1}, x^{-1}\alpha^{-1}) \cdot (\alpha, (x_1\alpha)x) (Id, x^{-1}(x_1\alpha)x).$$

Hence, $x_1 \sim_G x_2 \Leftrightarrow \exists \alpha \in A \text{ and } x \in F \text{ s.t. } x_2 = x^{-1}(x_1\alpha)x$.

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A":

Let
$$F$$
 be a group, $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(F)$, and consider $A = \langle \alpha_1, \ldots, \alpha_m \rangle \subseteq \operatorname{Aut}(F)$ and the semidirect product $G = F_m \ltimes_{\alpha_1, \ldots, \alpha_m} F$.

Theorem (Bogopolski–Martino–V., 2008)

Let F be \mathbb{Z}^d or F_r . Then $G = F_m \ltimes_{\alpha_1, ..., \alpha_m} F$ has solvable CP if and only if $A \cdot \mathsf{Inn}(F) = \langle \alpha_1, ..., \alpha_m \rangle \cdot \mathsf{Inn}(F) \leqslant \mathsf{Aut}(F)$ is orbit decidable.

This comes from a more general result

- replace F to any group with solvable TCP,
- replace F_m to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A":

Let
$$F$$
 be a group, $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(F)$, and consider $A = \langle \alpha_1, \ldots, \alpha_m \rangle \subseteq \operatorname{Aut}(F)$ and the semidirect product $G = F_m \ltimes_{\alpha_1, \ldots, \alpha_m} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^d or F_r . Then $G = F_m \ltimes_{\alpha_1, ..., \alpha_m} F$ has solvable CP if and only if $A \cdot \mathsf{Inn}(F) = \langle \alpha_1, ..., \alpha_m \rangle \cdot \mathsf{Inn}(F) \leqslant \mathsf{Aut}(F)$ is orbit decidable.

This comes from a more general result

- replace F to any group with solvable TCP,
- replace F_m to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A":

Let
$$F$$
 be a group, $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(F)$, and consider $A = \langle \alpha_1, \ldots, \alpha_m \rangle \subseteq \operatorname{Aut}(F)$ and the semidirect product $G = F_m \ltimes_{\alpha_1, \ldots, \alpha_m} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^d or F_r . Then $G = F_m \ltimes_{\alpha_1, \dots, \alpha_m} F$ has solvable CP if and only if $A \cdot \text{Inn}(F) = \langle \alpha_1, \dots, \alpha_m \rangle \cdot \text{Inn}(F) \leqslant \text{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_m to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A":

Let
$$F$$
 be a group, $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(F)$, and consider $A = \langle \alpha_1, \ldots, \alpha_m \rangle \subseteq \operatorname{Aut}(F)$ and the semidirect product $G = F_m \ltimes_{\alpha_1, \ldots, \alpha_m} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^d or F_r . Then $G = F_m \ltimes_{\alpha_1, \dots, \alpha_m} F$ has solvable CP if and only if $A \cdot \text{Inn}(F) = \langle \alpha_1, \dots, \alpha_m \rangle \cdot \text{Inn}(F) \leqslant \text{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_m to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

In fact, for the free and free abelian cases (among others), the converse is also true after "erasing the relations from A":

Let
$$F$$
 be a group, $\alpha_1, \ldots, \alpha_m \in \operatorname{Aut}(F)$, and consider $A = \langle \alpha_1, \ldots, \alpha_m \rangle \subseteq \operatorname{Aut}(F)$ and the semidirect product $G = F_m \ltimes_{\alpha_1, \ldots, \alpha_m} F$.

Theorem (Bogopolski-Martino-V., 2008)

Let F be \mathbb{Z}^d or F_r . Then $G = F_m \ltimes_{\alpha_1, \dots, \alpha_m} F$ has solvable CP if and only if $A \cdot \text{Inn}(F) = \langle \alpha_1, \dots, \alpha_m \rangle \cdot \text{Inn}(F) \leqslant \text{Aut}(F)$ is orbit decidable.

This comes from a more general result:

- replace F to any group with solvable TCP,
- replace F_m to any group with CP and "easy" centralizers,
- replace semidirect products to arbitrary short exact sequences.

Theorem (Bogopolski-Martino-V., 2008)

Let

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then,

$$A_G = \left\{egin{array}{ll} \gamma_g \colon F & o & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\}$$

 \leq Aut(F) is orbit decidable.

Theorem (Bogopolski-Martino-V., 2008)

Let

1. Orbit decidability

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then

$$A_G = \left\{ \begin{array}{ccc} \gamma_g \colon F & \to & F \\ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G \right\}$$

CP(G) is solvable \Leftarrow

 \leq Aut(F) is orbit decidable.

Theorem (Bogopolski-Martino-V., 2008)

Let

1. Orbit decidability

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle Z_{h,1} \sqcup \cdots \sqcup \langle h \rangle Z_{h,t_h}.$$

Then,

$$A_G = \left\{ egin{array}{ccc} \gamma_g \colon F &
ightarrow & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\}$$

CP(G) is solvable \iff

≪ Aut(F) is orbit decidable

Theorem (Bogopolski-Martino-V., 2008)

Let

1. Orbit decidability

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then

$$A_G = \left\{ egin{array}{ccc} \gamma_g \colon F &
ightarrow & F \ x & \mapsto & g^{-1}xg \end{array} \middle| g \in G
ight\}$$

CP(G) is solvable \iff

 \leq Aut(F) is orbit decidable.

Theorem (Bogopolski-Martino-V., 2008)

Let

1. Orbit decidability

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then,

$$extit{CP(G) is solvable} \iff egin{array}{ccccc} A_G = \left\{ egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x &
ightarrow & g^{-1}xg \end{array} \middle| g \in G
ight\} \end{array}$$

 \leq Aut(F) is orbit decidable.

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted TCP(F): "Given $\varphi \in Aut(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

 $TCP(\mathbb{Z}^d)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_r)$ is solvable.

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted TCP(F): "Given $\varphi \in Aut(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

 $TCP(\mathbb{Z}^d)$ is solvable

Theorem (Bogopolski–Martino–Maslakova–V., 2005)

 $TCP(F_r)$ is solvable.

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted TCP(F): "Given $\varphi \in Aut(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

 $TCP(\mathbb{Z}^d)$ is solvable.

Theorem (Bogopolski–Martino–Maslakova–V., 2005) $TCP(F_r)$ is solvable.

Definition

For $\varphi \in \operatorname{End}(F)$, two elements $u, v \in F$ are said to be φ -twisted conjugated, denoted $u \sim_{\varphi} v$, if $v = (g\varphi)^{-1}ug$ for some $g \in F$.

Definition

The twisted conjugacy problem for F, denoted TCP(F): "Given $\varphi \in Aut(F)$ and $u, v \in F$ decide whether $u \sim_{\varphi} v$ ".

Observation

 $TCP(\mathbb{Z}^d)$ is solvable.

Theorem (Bogopolski-Martino-Maslakova-V., 2005)

 $TCP(F_r)$ is solvable.

Theorem (Bogopolski-Martino-V., 2008)

Let G be a surface group. Then, TCP(G) for is solvable.

Theorem (González-Meneses-V., 2010)

Let B_n be the Braid group. Then, $TCP(B_n)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP(F) is solvable.

Theorem (Bogopolski-Martino-V., 2008)

Theorem (Bogopolski-Martino-V., 2008)

Let G be a surface group. Then, TCP(G) for is solvable.

Theorem (González–Meneses–V., 2010)

Let B_n be the Braid group. Then, $TCP(B_n)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP(F) is solvable.

Theorem (Bogopolski-Martino-V., 2008)

Theorem (Bogopolski–Martino–V., 2008)

Let G be a surface group. Then, TCP(G) for is solvable.

Theorem (González-Meneses-V., 2010)

Let B_n be the Braid group. Then, $TCP(B_n)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP(F) is solvable.

Theorem (Bogopolski-Martino-V., 2008)

Theorem (Bogopolski–Martino–V., 2008)

Let G be a surface group. Then, TCP(G) for is solvable.

Theorem (González-Meneses-V., 2010)

Let B_n be the Braid group. Then, $TCP(B_n)$ is solvable.

Theorem (Burillo-Matucci-V., 12)

Let F be Thompson's group. Then, TCP(F) is solvable.

Theorem (Bogopolski–Martino–V., 2008)

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, TCP(G) for endomorphisms is solvable.

Question

Is $TCP(F_r)$ solvable for endomorphisms?

Theorem (Miasnikov-Nikolaev-Ushakov, preprint)

Double-TCP(F_r) is unsolvable for $r \ge 28$.

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, TCP(G) for endomorphisms is solvable.

Question

Is $TCP(F_r)$ solvable for endomorphisms?

Theorem (Miasnikov–Nikolaev–Ushakov, preprint) Double- $TCP(F_r)$ is unsolvable for $r \ge 28$.

Theorem (Romankov-V., 2009)

Let G be a polycyclic metabelian group. Then, TCP(G) for endomorphisms is solvable.

Question

Is $TCP(F_r)$ solvable for endomorphisms?

Theorem (Miasnikov–Nikolaev–Ushakov, preprint)

Double-TCP(F_r) is unsolvable for $r \ge 28$.

Theorem (Bogopolski-Martino-V., 2008)

Let

1. Orbit decidability

$$1 \longrightarrow F \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow 1$$

be an algorithmic short exact sequence of groups such that

- (i) TCP(F) is solvable,
- (ii) CP(H) is solvable,
- (iii) there is an algorithm which, given an input $1 \neq h \in H$, computes a finite set of elements $z_{h,1}, \ldots, z_{h,t_h} \in H$ such that

$$C_H(h) = \langle h \rangle z_{h,1} \sqcup \cdots \sqcup \langle h \rangle z_{h,t_h}.$$

Then.

$$extit{CP(G) is solvable} \iff egin{array}{ccccc} A_G = \left\{ egin{array}{cccc} \gamma_g \colon F &
ightarrow & F \ x &
ightarrow & g^{-1}xg \end{array} \middle| g \in G
ight\} \end{array}$$

 \leq Aut(F) is orbit decidable.

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \le Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \leq Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

- given $u, v \in F$ decide whether they are conjugate in G: this is orbit decidability of $A_G \le Aut(F)$.
- given $g, g' \in G \setminus F$ decide whether they are conjugate in G; Let us solve this using (i), (ii) and (iii):
 - check whether gβ, g'β are conjugate in H; if not, g, g' are not conjugate in G either.
 - Otherwise, compute $u \in G$ such that $(u\beta)^{-1}(g\beta)(u\beta) = g'\beta$.
 - Changing g to g^u , we can assume $g\beta = g'\beta \neq 1_H$. Compute $f \in F$ such that g' = gf.
 - Compute the centralizer of $g\beta \neq 1$ in H, and preimages y_1, \ldots, y_t in $G: C_H(g\beta) = \langle g\beta \rangle (y_1\beta) \sqcup \cdots \sqcup \langle g\beta \rangle (y_t\beta)$.
 - Compute $p_i \in F$ such that $y_i^{-1}gy_i = gp_i$ (since $g\beta$ and $y_i\beta$ commute in H).

• All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, $i = 1, \ldots, t$ and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

and

$$x^{-1}gp_ix = gf \iff g^{-1}x^{-1}gp_ix = f$$

 $(x\psi_g)^{-1}p_ix = f$
 $f \sim_{\psi_g} p_i,$

 And this can be decided with finitely many applications of TCP(F).

The short exact sequence theorem

• All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, i = 1, ..., t and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

and

$$x^{-1}gp_ix = gf \iff g^{-1}x^{-1}gp_ix = f$$

 $(x\psi_g)^{-1}p_ix = f$
 $f \sim_{\psi_g} p_i,$

 And this can be decided with finitely many applications of TCP(F).

The short exact sequence theorem

• All possible conjugators from g to g' in G commute with $g\beta = g'\beta$ in H, so they are of the form g^ry_ix , for some $r \in \mathbb{Z}$, i = 1, ..., t and $x \in F$. Now,

$$(x^{-1}y_i^{-1}g^{-r})g(g^ry_ix) = x^{-1}(y_i^{-1}gy_i)x = x^{-1}gp_ix$$

and

$$x^{-1}gp_ix = gf \iff g^{-1}x^{-1}gp_ix = f$$

 $(x\psi_g)^{-1}p_ix = f$
 $f \sim_{\psi_g} p_i,$

 And this can be decided with finitely many applications of TCP(F).

Outline

- Orbit decidability
- 2 Free group and relatives
- Orbit undecidable subgroups
- Connection with the Conjugacy Problem
- 6 Applications

For free abelian-by-free groups: $1 \to \mathbb{Z}^d \to G \to F_m \to 1$.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

For free abelian-by-free groups: $1 \to \mathbb{Z}^d \to G \to F_m \to 1$.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

For free abelian-by-free groups: $1 \to \mathbb{Z}^d \to G \to F_m \to 1$.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

For free abelian-by-free groups: $1 \to \mathbb{Z}^d \to G \to F_m \to 1$.

Corollary

 \mathbb{Z}^d -by- \mathbb{Z} groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

If $\Gamma = \langle M_1, \dots, M_m \rangle$ is of finite index in $GL_d(\mathbb{Z})$ then $\mathbb{Z}^d \rtimes_{M_1, \dots, M_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

For free-by-free groups: $1 \rightarrow F_n \rightarrow G \rightarrow F_m \rightarrow 1$.

Corollary (Bogopolski–Martino–Maslakova–V. 2006 alt.: Bridson–Groves 2010 + Ol'shanski–Sapir 2006

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every F2-by-free group has solvable conjugacy problem.

For free-by-free groups: $1 \rightarrow F_n \rightarrow G \rightarrow F_m \rightarrow 1$.

Corollary (Bogopolski–Martino–Maslakova–V. 2006 alt.: Bridson–Groves 2010 + Ol'shanski–Sapir 2006)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski–Martino–V., 2008)

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every F₂-by-free group has solvable conjugacy problem.

For free-by-free groups: $1 \rightarrow F_n \rightarrow G \rightarrow F_m \rightarrow 1$.

Corollary (Bogopolski–Martino–Maslakova–V. 2006 alt.: Bridson–Groves 2010 + Ol'shanski–Sapir 2006)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every F₂-by-free group has solvable conjugacy problem.

For free-by-free groups: $1 \rightarrow F_n \rightarrow G \rightarrow F_m \rightarrow 1$.

Corollary (Bogopolski–Martino–Maslakova–V. 2006 alt.: Bridson–Groves 2010 + Ol'shanski–Sapir 2006)

Free-by-cyclic groups have solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

If $\Gamma = \langle \varphi_1, \dots, \varphi_m \rangle$ has finite index in $\operatorname{Aut}(F_r)$ then $F_r \rtimes_{\varphi_1, \dots, \varphi_m} F_m$ has solvable conjugacy problem.

Corollary (Bogopolski-Martino-V., 2008)

Every F₂-by-free group has solvable conjugacy problem.

For braid-by-free groups: $1 \rightarrow B_n \rightarrow G \rightarrow F_m \rightarrow 1$.

Corollary (González-Meneses-V., 2008)

Every braid-by-free group has solvable conjugacy problem.

1. Orbit decidability

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_3 \times F_{14}$) with unsolvable conjugacy problem.

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_3 \times F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^4 -by-free groups (more precisely \mathbb{Z}^4 -by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^3 -by-free group with unsolvable conjugacy problem ?

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_3 \rtimes F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^4 -by-free groups (more precisely \mathbb{Z}^4 -by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^3 -by-free group with unsolvable conjugacy problem ?

Theorem (Miller, 70's)

There exist free-by-free groups (more precisely $F_3 \times F_{14}$) with unsolvable conjugacy problem.

Theorem (Bogopolski-Martino-Maslakova-V., 2006)

There exist \mathbb{Z}^4 -by-free groups (more precisely \mathbb{Z}^4 -by- F_{14}) with unsolvable conjugacy problem.

Theorem (Burillo-Matucci-V., 2012)

There exists a Thompson-by-free group with unsolvable conjugacy problem.

Question

Does there exist a \mathbb{Z}^3 -by-free group with unsolvable conjugacy problem ?

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\begin{array}{ccc} \phi: F_m & \to & \mathsf{GL}_d(\mathbb{Z}) \\ & f_i & \mapsto & \left(\begin{array}{cc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2 \ge 4$, there exists $\langle g_1, \ldots, g_m \rangle = \Gamma \le GL_{d-2}(\mathbb{Z})$ being
- Let $F_m = \langle f_1, \ldots, f_m \rangle$, and choose matrices $s_1, \ldots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \ldots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})
f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

These substituted acids his system less F < Ol (77) some from Milesille

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\phi: F_m \to \operatorname{GL}_d(\mathbb{Z})$$

$$f_i \mapsto \begin{pmatrix} g_i & 0 \\ 0 & s_i \end{pmatrix}$$

Those orbit undecidable examples $\Gamma \leqslant GL_4(\mathbb{Z})$ came from Mihailova's construction, so they are not finitely presented...

Proposition (Sunic-V.)

For $d \ge 6$, $GL_d(\mathbb{Z})$ contains f.g., orbit undecidable, free, subgroups.

- Since $d-2\geqslant 4$, there exists $\langle g_1,\ldots,g_m\rangle=\Gamma\leqslant GL_{d-2}(\mathbb{Z})$ being orbit undecidable.
- Let $F_m = \langle f_1, \dots, f_m \rangle$, and choose matrices $s_1, \dots, s_m \in GL_2(\mathbb{Z})$ such that $\langle s_1, \dots, s_m \rangle \simeq F_m$.
- Consider the homomorphism given by

$$\begin{array}{ccc} \phi : F_m & \to & \operatorname{GL}_d(\mathbb{Z}) \\ f_i & \mapsto & \left(\begin{array}{cc} g_i & 0 \\ 0 & s_i \end{array} \right) \end{array}$$

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \ldots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \ge 6$, there exists a **free** $\Gamma \le \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \times \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \ldots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a **free** $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \dots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a **free** $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012

- Since $\langle s_1, \ldots, s_m \rangle \leqslant GL_2(\mathbb{Z})$ is free with basis $\{s_1, \ldots, s_m\}$, then ϕ must be one-to-one, and its image F is a free subgroup of $GL_d(\mathbb{Z})$ or rank m.
- Easy to see that $F \leqslant \operatorname{GL}_d(\mathbb{Z})$ is orbit undecidable (using the orbit undecidability of $\langle g_1, \ldots, g_m \rangle = \Gamma \leqslant \operatorname{GL}_{d-2}(\mathbb{Z})$). \square

In summary,

For $d \geqslant 6$, there exists a **free** $\Gamma \leqslant \operatorname{GL}_d(\mathbb{Z})$ such that $\mathbb{Z}^d \rtimes \Gamma$ has unsolvable CP.

Theorem (Sunic-V., 2012)

THANKS