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Equations

Definition
Let G be a group, and H 6 G. An H-equation is an element
w(X ) ∈ H ∗ 〈X 〉 ' H ∗ Z (usually written w(X ) = 1). It has the form

w(X ) = h0X ε1h1 · · · hd−1X εd hd ,

where h0, . . . ,hd ∈ H, ε1, . . . , εd = ±1, and, for i = 1, . . . ,d − 1, hi = 1
implies εi = εi+1. The integer d > 0 is called the degree of w(X ).
Further, w(X ) is balanced if ε1 + · · ·+ εd = 0.

Definition

An element g ∈ G is a solution of w(X ) if
w(g) = h0gε1h1 · · · hn−1gεn hn = 1 in G.

Example

For h 6= 1, the H-eq. X 2hX−2 = h (meaning h−1X1XhX−11X−1 = 1)
is a balanced equation of degree 4, having g ∈ G as a solution⇔
g2 ∈ CenG(h).
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Equations

There are many results concerning equations in different families of
groups...

Theorem (Makanin/Razborov)

There is an algorithm which, given an equation over a free group Fr ,
decides whether it has a solution in Fr , or not. In the affirmative case,
one can give a finite description of the set of all such solutions.

We are interested in the dual problems:

Problem
Given H 6fg G and g ∈ G, does g satisfy some non-trivial H-equation
w(X ) = 1? In the affirmative case, find/describe them all.

Problem
Given H 6fg G, describe the set of all elements g ∈ G satisfying
some non-trivial H-equation (say, ’algebraic’ over H).
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Dependence

Definition
Let H 6fg G and g ∈ G. We say that g is dependent on H if ∃ a
nontrivial H-equation w(X ) = 1 s.t. w(g) = 1. Denote by
• dep G(H) = {g ∈ G | g dependent on H}
• Dep G(H) = 〈dep G(H)〉 6 G, the dependence subgroup of H.
For H 6 K 6 G, we have Dep K (H) = K ∩ Dep G(H).

Example

• If g ∈ H then g is dependent on H (satisfying g−1X = 1).
• If 1 6= H EG then dep (H) = G (any g ∈ G is a solution to the
H-equation X−1hX = h′, where 1 6= h ∈ H, and h′ = g−1hg ∈ H).
• If Hg−1 ∩ H 6= 1 then g is dependent on H (satisfying
X−1hXh′−1 = 1, for every h ∈ Hg−1 ∩ H and h′ = g−1hg ∈ H).
• If H 6fi G then dep (H) = G (any g ∈ G is a solution to the
H-equation X r h−1

r = 1, for some r � 0, and hr = gr ∈ H).
• dep ({1}) = { torsion elements in G} (the only {1}-equations are
X d = 1, for d ∈ Z).
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Dependence

Observation

Let G be a group and H 6 G. If g ∈ dep (H) then HgH ⊆ dep (H).

Let w(X ) = h0X ε1h1X ε2 · · · hd−1X εd hd be an H-equation (of degree d)
s.t. w(g) = 1. Then, for every h,h′ ∈ H,

w ′(X ) = h0(h−1Xh′−1)ε1h1(h−1Xh′−1)ε2 · · · hd−1(h−1Xh′−1)εd hd

(of degree 6 d) satisfies w ′(hgh′) = w(g) = 1. So, hgh′ ∈ dep (H). �

Observation

In general, dep (H) is not necessarily a subgroup of G.

In the free group G = F{a,b}, let H = 〈a2,b2〉. Both a,b ∈ dep (H)

(satisfying the H-equations a−2X 2 = 1 and b−2X 2 = 1, resp.), but
ab /∈ dep (H) (since {a2,b2,ab} is a freely independent set). �
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Dependence closure

Definition

Let H 6 G. We say that H is dependence-closed if Dep (H) = H. For
example, free factors of G are dependence-closed.

Definition
For H 6 G, define H0 6 H1 6 H2 6 · · · as H0 = H and
Hi = Dep (Hi−1) = Dep i (H), i > 1. The dependence closure of H is
D̂ep (H) = ∪i>0Hi 6 G. Of course, D̂ep (H) is the smallest
dependence-closed subgroup containing H.
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Main results

Theorem (A)

Let F (A) be a free group. There is an algorithm which, on input a (set
of generators for a) subgroup H 6fg F (A), it computes finitely many
elements g1, . . . ,gt ∈ F (A) dependent on H such that
dep F (A)(H) = Hg1H ∪ · · · ∪ HgtH.

Theorem (B)

Let F (A) be a free group. There is an algorithm which, on input
H 6fg F (A) and g ∈ F (A), decides whether g is dependent on H and,
in case it is, it computes m > 1 many non-trivial H-equations
w1(X ), . . . ,wm(X ) ∈ H ∗ 〈X 〉 such that w1(g) = · · · = wm(g) = 1 and
kerϕg =� w1(X ), . . . ,wm(X )�.

Theorem (C)

If H 6fg F (A) then D̂ep (H) is again f.g. and computable (in particular,
H0 6 H1 6 · · · 6 D̂ep (H) stabilizes in finitely many steps).
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A proof using Nielsen transformations

A first proof is easy using classical results...

Definition

Given H 6 G and g ∈ G, consider the morphism ϕg : H ∗ 〈X 〉 → G,
h 7→ h, X 7→ g. Then, w(X )ϕg = w(g) and so,
{w(X ) | w(g) = 1} = kerϕg E H ∗ 〈X 〉.

Proof Thm. B.

• Compute a free basis {h1, . . . ,hr} for H.
• Consider the morphism ϕg : H ∗ 〈X 〉 → F (A).

h1 7→ h1
· · ·

hr 7→ hr
X 7→ g

• Since Im(ϕg) = 〈h1, . . . ,hr ,g〉 = 〈H,g〉, we deduce that
rk(Im(ϕg)) 6 r + 1, say rk(Im(ϕg)) = r + 1−m, for m > 0, and there
.
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A proof using Nielsen transformations

a sequence of Nielsen transformations such that

ϕg : H ∗ 〈X 〉 → F (A)

h1 7→ h1 ∼ · · · ∼ 1
· · ·

hm 7→ hm ∼ · · · ∼ 1
hm+1 7→ hm+1 ∼ · · · ∼ u′m+1

· · ·
hr 7→ hr ∼ · · · ∼ u′r
X 7→ g ∼ · · · ∼ u′r+1

{u′m+1, . . . ,u
′
r+1} is a free basis for Im(ϕg) = 〈H,g〉.
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Stallings automata

Definition

A Stallings automaton over A is a finite A-graph (V ,E ,q0), such that:
1- it is connected,
2- it is trim, (no vertex of degree 1 except possibly q0),
3- it is deterministic (no two edges with the same label go out of (or

into) the same vertex).

NO : •

a

��

b

��
• c // •

a
** •

b

XX

c

jj

YES : •

a

��

b

��
•

a
** •

b

XX

c

jj
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Stallings automata

In the influent paper

J. R. Stallings, Topology of finite graphs, Inventiones Math. 71 (1983),
551-565,

Stallings (building on previous works) gave a bijection between finitely
generated subgroups of F (A) and Stallings automata:

{f.g. subgroups of F (A)} ←→ {Stallings automata over A},

which is crucial for the modern understanding of the lattice of
subgroups of F (A), and for many algorithmic issues about free
groups.
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π(A,q0) and L(A)

Definition

Given A = (V ,E ,q0), its fundamental group and its language are:
π(A,q0) = { closed paths at q0 mod. cancel. } ' F1−|VA|+|EA|,
L(A) = { labels of closed paths at q0} 6 F (A).

Proposition

For every Stallings automaton A = (V ,E ,q0), and every maximal tree
T , the group L(A) is free with free basis

{xe = `(T [q0, ιe] · e · T [τe,q0]) ∈ L(A) | e ∈ EX − ET},

where T [p,q] denotes the geodesic in T from p to q, and `(γ) ∈ F (A)
stands for the label of the path γ. Thus, rk(L(A)) = 1− |V |+ |E |.

Corollary

The ’label’ morphism ` : π(A,q0)� L(A) 6 F (A), γ 7→ `(γ), is onto;
and injective when A is a Stallings automaton.
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Constructing the automaton from the subgroup

Given generators {g1, . . . ,gn} for H 6 F (A) (as reduced words),
construct the flower automaton, denoted F({g1, . . . ,gn}).

Clearly, F({g1, . . . ,gn}) is trim, and L(F({g1, . . . ,gn})) = H,

... but F({g1, . . . ,gn}) is not in general deterministic...

In any automaton A containing the situation

A : • a //

a
&&

u

v ,

for a ∈ A±1, we can fold the two edges into one and obtain

A′ : • a // u = v .
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Constructing the automaton from the subgroup

Definition

This operation, A ϕ
 A′, is called an elementary Stallings folding. It is

said to be open if u 6= v and closed if u = v.
Note that it induces an epimorphism ϕ : π(A,q0)� π(A′,q0), which
is an isomorphism (of free groups) iff the folding is open.

Lemma (Stallings)

If A ϕ
 A′ is a Stallings folding then L(A) = L(A′); also, ϕ` = `.

Given a f.g. subgroup H = 〈g1, . . . , gn〉 6 FA (we assume the gi are
reduced words), do the following:

1- draw the flower automaton, F = F({g1, . . . ,gn}),
2- perform successive foldings until obtaining a Stallings

automaton, denoted ΓH ,

F  A1  · · · At = ΓH .
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Local confluence

It can be shown that

Proposition

The automaton ΓH does not depend on the sequence of foldings.

Proposition

The automaton ΓH does not depend on the generators of H.

Theorem
The following is a well defined bijection:

{f.g. subgroups of FA} ←→ {Stallings automata}
H → ΓH

L(A) ← A
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An easy free factor result

Proposition (Miasnikov–V.–Weil, 07; Rosenmann, 01)

Let H 6 F be free groups, and g ∈ F. The following are equivalent:
(a) the morphism ϕg : H ∗ 〈X 〉 → F is injective;
(b) ker(ϕg) = 1, i.e., no nontrivial equation satisfied by g;
(c) H is a proper free factor of 〈H,g〉;
(d) H is contained in a proper free factor of 〈H,g〉.
If, in addition, H is f.g., then these are further equivalent to:
(e) rk(〈H,g〉) = rk(H) + 1;
(f) rk(〈H,g〉) > rk(H).
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Folding down to Γ〈H,g〉
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Elevating the elementary paths ξi

Fold ΓH/(p = q) down to Γ〈H,g〉 doing first the open foldings, and the
closed ones at the end. Choose a maximal tree T in Γ0 and
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Getting the equation

Looking at each such ξ̂ in ΓH , it is a closed path with several (≥ 1)
p − q and/or q − p discontinuities:
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We have them all

Collect equations w1(X ), . . . ,wm(X ) from the m > 0 closed foldings
above and...

Claim

� w1(X ), . . . ,wm(X )�= kerϕg .

Proof.
From the pair of edges at the i-th closed folding, choose a primary
and a secondary one, {ei

1,e
i
2}, with ei

2 6∈ ET (of course,
`(ei

1) = `(ei
2)).

Let w(X ) be an H-equation s.t. w(g) = 1; let us show that
w(X ) ∈� w1(X ), . . . ,wm(X )�.
It determines a closed path ξ̂ with discontinuities in ΓH , which projects
down to a closed path ξ in Γ0.
Let’s do induction on the number of visits to secondary edges:
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down to a closed path ξ in Γ0.
Let’s do induction on the number of visits to secondary edges:
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We have the following decomposition and apply induction:
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