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1. Introduction

For any group G, we write rk(G) to denote the rank of G, which is the minimum cardinal of

a generating set for G, i.e., rk(G) = min{|S| | S ⊆ G = 〈S〉} and, r̃k(G) = rk(G) − 1. We say
that G is finitely generated if rk(G) is finite. Finitely generated free groups, namely Fn have been
extensively studied in the literature of group theory since more than a hundred years ago, in spite
of their wider and complicated structure. On the other hand, free-abelian groups, namely Zm, are
classical and very well known. All of my results during the first year is based on the group which
is the direct product Zm×Fn, namely free-abelian times free groups. And the group looks like the
following: Let {x1, x2, . . . , xn} is the free basis of Fn, and {t1, t2, . . . , tm} is a basis of Zm.

(1) Zm × Fn = 〈t1, ..., tm, x1, ..., xn | titj = tjti, tixk = xkti〉,

where i, j = 1, 2, . . . ,m and k = 1, 2, . . . , n. The normal form of any element g in this group is,

tau = ta11 . . . tamm u(x1, . . . , xn) = t(a1,...,am)u(x1, . . . , xn),

where a = (a1, . . . , am) ∈ Zm is a row integral vector, and u = u(x1, . . . , xn) is a reduced word in
Fn. Note that the symbol t by itself has no real meaning, but it allows us to convert the notation
for the abelian group Zm from additive into multiplicative, by moving up the vectors (i.e. the
entries of the vectors) to the level of exponents; this will be especially convenient when working in
Zm × Fn, a non-commutative group in general.
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If we think about the behavior of Zm×Fn, at a first glance, it seems very elementary consequences
of behaviors of Zm and Fn. In fact one problem or question concerning Zm×Fn will easily reduce to
the corresponding question or problems for Zm and Fn, if it is very easy or rigid enough. However,
some other naive looking questions have a considerably more elaborated answer in Zm × Fn rather
than in Zm or Fn. This is the case, for example, when one considers automorphisms: Aut(Zm×Fn)
naturally contains GL(m,Z)×Aut(Fn), but there are many more automorphisms other than those
preserving the factors Zm and Fn. This fact causes potential complications when studying problems
involving automorphisms: apart from understanding the problem in both the free-abelian and the
free parts, one has to be able to control how is it affected by the interaction between the two parts.
And in the paper [2] Delgado and Ventura gave a description that how any general automorphism
looks like in this group Zm × Fn.

Definition 1.1. Let G be any finitely generated group and H6fgG. We say that H is compressed
if rk(H) 6 rk(K), for every H 6 K 6fg G. And H is inert if rk(H ∩ K) 6 rk(K), for every
K 6fg G.

The notion of compression and inertia was first introduced by Dicks and Ventura in 1996 [3].
And they proved that fixed subgroups of families of monos of free group are inert in free group.
And later in 2004, Martino and Ventura (see in [8]) proved that the fixed subgroup of any arbitrary
family of endomorphisms of Fn, is compressed in Fn. As we already have the above results and the
general structure of automorphism of Zm×Fn, my goal was to give some positive results about the
compression or inertia property of any subgroup and any auto-fixed subgroup of Zm × Fn.

We define the degrees of compression and inertia as two parameters measuring how close is a
subgroup of Zm × Fn to be compressed or inert. The extremal value 1 will indicate compres-
sion/inertia, and the bigger the coresponding degree is from 1, the farther will the subgroup be
from being compressed/inert. For degree of compression we obtain no particularly explicit formula,
but it is algorithmically computable; so, it is decidable if a subgroup is compressed or not. And we
have concise formula for degree of inertia of any finitely generated subgroup H of Zm × Fn.

First we will introduce the notion of degrees of compression and inertia and prove their general
properties. In Theorems 2.10 and 3.1 the main results are proven. And in theorem 2.3 we proof
the little bit modified version of compression for auto-fixed subgroup of Zm × Fn.

Definition 1.2. Let G be any finitely generated group and H6fgG. The degree of compression of

H is dc(H) = sup
K

r̃k(H)

r̃k(K)
, for every non-cyclic K and H 6 K6fgG.

Observation 1.3. dc(H) = sup
K

r̃k(H)

r̃k(K)
= r̃k(H)

inf
K

r̃k(K)
= r̃k(H)

min
K

r̃k(K)
= max

K

r̃k(H)

r̃k(K)
, for every non-cyclic K

and H 6 K6fgG.

Definition 1.4. Let H be any finitely generated subgroup of any group G.The degree of inertia of

H is di(H) = sup
K 6=〈x〉

H∩K6fgG

r̃k(H∩K)

r̃k(K)
, for every K6fgG.

Remark 1.5. Let H6fgG. Then, di(H) = α ⇒ r̃k(H ∩ K) 6 α r̃k(K) for every non-cyclic
K satisfying H 6 K6fgG. And, ∀1 > ε > 0, there exists K(with above conditions) such that

r̃k(H ∩K) > (α− ε) r̃k(K).

Note 1.6. If H is cyclic, dc(H) = di(H) = 1
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Lemma 1.7. G be a finitely generated group and φ : G→ G be an automorphism, H 6fg G, then
the following holds.
(a) di(Hφ) = di(H).
(b) dc(Hφ) = dc(H).

Proof. (a) From the definition of Degree of Inertia, we have,di(Hφ) = sup
K6fgG
K 6=〈x〉

Hφ∩K6fgG

r̃k(Hφ∩K)

r̃k(K)
.

We take one such finitely generated K which is not cyclic and Hφ ∩K is also finitely generated.
As φ is an automorphism,

r̃k(Hφ∩K)

r̃k(K)
= r̃k((Hφ∩K)φ−1)

r̃k(Kφ−1)
= r̃k(H∩Kφ−1)

r̃k(Kφ−1)

Since, φ is auto, Kφ−1 and H ∩Kφ−1 are finitely generated and Kφ−1 is non-cyclic. Therefore,

r̃k(H ∩Kφ−1)

r̃k(Kφ−1)
6 sup

L6fgG
L6=〈x〉

H∩L6fgG

r̃k(H ∩ L)

r̃k(L)
= di(H)

Therefore, di(Hφ) 6 di(H) for all φ and for every H6fgG.
And replacing H by Hφ and φ by φ−1, we have, di(Hφφ−1) 6 di(Hφ)⇒ di(H) 6 di(Hφ).

(b) same as (a). �

Corollary 1.8. G be a finitely generated group and H6fgG, then for any x ∈ G
(a) di(Hx) = di(H).
(b) dc(Hx) = dc(H).

Observation 1.9. (a) If G be any finitely generated free group,

1 6 dc(H) 6 di(H) 6 r̃k(H), ∀H6fgG.

( b) If G be any finitely generated group, 1 6 dc(H) 6 di(H) 6∞, ∀H6fgG.
(c) H is compressed if and only if dc(H) = 1.
(d) H is inert if and only if di(H) = 1.

Proof. (a) By definition 1 6 dc(H), as we can take K = H.

di(H) = sup
K 6=〈x〉

r̃k(H∩K)

r̃k(K)
, ∀K6fgG

Let, di(H) = p, therefore r̃k(H ∩K) 6 p r̃k(K), for every K6fgG.
Applying this inequality to any K containing H we get,

r̃k(H) 6 p r̃k(K)
⇒ dc(H) 6 p = di(H).
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If G is a finitely generated free group, HNC holds, so,

r̃k(H ∩K) 6 r̃k(H) r̃k(K), for every H and K.

⇒ di(H) 6 r̃k(H)

And hence, 1 6 dc(H) 6 di(H) 6 r̃k(H).

(b) If G is any group, we can not bound the rank of H ∩K, hence the result follows.

(c) and (d) follow immediately from the definition. �

2. Degree of Compression

Definition 2.1. A finitely generated subgroup H of finitely generated group G is (m, l) -compressed

if r̃k(H) 6 m+ l r̃k(K), for every H 6 K 6fg G.

Remark 2.2. A subgroup is compressed if and only if it is (0, 1)-compressed.

From now through out the document mother group G = (Zm × Fn). Any automorphism of the
group (Zm × Fn) is of the following type (see in [2]). Let Ψ ∈ Aut(Zm × Fn) and it is defined as
the following

Ψ: Zm × Fn −→ Zm × Fn
tau 7−→ taQ+uPφ(u),

where a ∈ Zm, u ∈ Fn, φ ∈ Aut(Fn), Q ∈ GL(m,Z) , P ∈ Mn×m(Z) and u is the abelianization
of u.

Theorem 2.3. If Fix(Ψ) is f.g, then Fix(Ψ) is (dimE1(Q), l)-compressed, where l depends on Ψ
and l is computable.

Proof. Letρ be the abelinazation map of Fn and M be the image of (Im −Q). ρ′ is the restriction
of ρ to Fixφ (not to be confused with the abelianization map of the subgroup Fixφ itself), and let
P ′ be the restriction of P to image of ρ′. Let N = M ∩ ImP ′,and consider its pre-image first by
P ′ and then by ρ′, see the following diagram:

>M = Im(Im −Q)

= M ∩ ImP ′.

6 E E

Fn Zn
ρ // // ZmP //

Fixφ Im ρ′
ρ′ // // ImP ′

P ′ // //

E E E

Im−Q

��

NNP′
−1 �ooNP′

−1
ρ′−1 �oo(Fix Ψ)π =

It is very easy to calculate that Fix(Ψ) ∩ Zm = E1(Q) and Fix(Ψ)π = NP ′
−1
ρ′
−1

. Therefore
we have,

(2) rk(Fix(Ψ)) = dim(E1(Q)) + rk((Fix(Ψ)π)
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Let, l = [Fix(φ) : NP ′−1ρ′−1] = [Fix(φ) : (Fix(Ψ))π]. From the hypothesis Fix(Ψ) is finitely
generated and dim(E1(Q)) is finite. Hence, from (2) Fix(Ψ)π is finitely generated. We know
that any non-trivial normal subgroup of free group is either of finite index or infinite generated.
Therefore in our case l is finite. Since the index is finite, we can apply Schreier Index formula.
Therefore, r̃k((Fix(Ψ))π) = l r̃k(Fix(φ)). Let, K be any finitely generated subgroup of Zm × Fn
containing Fix(Ψ) .
Now,

(Fix(Ψ))π 6l Fix(φ)

Therefore,

(Fix(Ψ))π 6l′ Fix(φ) ∩Kπ 6 Fix(φ), where l′ 6 l.

And since φ ∈ Aut(Fn) , Fix(φ) is inert. Hence, r̃k(Fix(φ) ∩Kπ) 6 r̃k(Kπ) So,

r̃k((Fix(Ψ))π) = l′ r̃k(Fix(φ) ∩Kπ)

6 l′ r̃k(Kπ)

6 l′ r̃k(K)

6 l r̃k(K)

Now from Equation (2),

(3) r̃k(Fix(Ψ)) 6 dimE1(Q) + l r̃k(K)

And from Equation (3) rk(FixΨ) 6 dim(E1(Q)) + l rk(K). And this holds for any K6fgZm × Fn.
This completes the proof �

Note 2.4. As K is arbitrary, we can choose K in a way such that Kπ = Fixφ. And then no l′ < l
will satisfy (3) So, this l is the best minimal value.

Definition 2.5. Let H 6 K be an extension of free groups and let x ∈ K. We say that x is
K-algebraic over H if every free factor of K containing H, H 6 L 6ff K, satisfies x ∈ L. We say
that an extension of free groups H 6 K is algebraic, and we write H 6alg K, if every element of
K is K-algebraic over H.

Theorem 2.6 (M. Takahasi, [9]). Let H 6fg Fn. Then, there exists a finite computable collection
of extensions of H, say AE(H) = {H = H0, H1, . . . ,Hr}, all finitely generated and satisfying
H 6 Hi 6 Fn, such that every extension K of H, H 6 K 6 Fn, contains one of them as a free
factor, say H 6 Hi 6∗ K = Hi ∗ L.

Lemma 2.7. Let H6fgZm × Fn.

dc(H) = max
H6K

r̃k(H)

r̃k(K)
= max

H6K
Hπ6algKπ

r̃k(H)

r̃k(K)
, where K6fgZm × Fn.

Proof. Let, H = 〈ta1u1, t
a2u2, . . . , t

arur, t
b1 , tb2 , . . . , tbs〉 6 Zm × Fn, where {u1, . . . , ur} is a free

basis of Hπ, and ai ∈ Zm for i = 1, 2, . . . , r, and {b1, . . . , bs} is a free-abelian basis of LH = H∩Zm.
And let K be any subgroup of Zm×Fn containing H and K∩Zm = LK = 〈d1, d2, . . . , ds′〉. Clearly,
LH 6 LK , therefore, dim(LH) 6 dim(LK) and Hπ 6 Kπ.
Therefore, there exists M ∈ AE(Hπ) such that Hπ6algM6ffKπ. Now we will take a basis for
M = 〈v1, v2, . . . , vp〉 and extend it to a basis of Kπ = 〈v1, v2, . . . , vp, vp+1, . . . , vq〉. We will choose
c1, c2, . . . , cp, cp+1, . . . , cq in such a way that H 6 〈tc1v1, t

c2v2, . . . , t
cpvp, t

cp+1vp+1, . . . , t
cqvq, LK〉

where ci ∈ Zm; i = 1, 2, . . . , q. Let, M̃ = 〈tc1v1, t
c2v2, . . . , t

cpvp, t
d1 , td2 , . . . , tds′ 〉, i.e., LM̃ ≡ LK .
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Therefore, Hπ6algM̃π ≡ M6ffKπ and LK 6 LM̃ . Now, we have to show that taiui ∈ M̃. Since,

Hπ6algM̃π, ui = wi(v1, v2, . . . , vp); i = 1, 2, . . . r, and it is unique. For this unique word, we will
compute wi(t

c1v1, t
c2v2, . . . , t

cpvp) in place of v1, v2, . . . vp.

(4) wi(t
c1v1, t

c2v2, . . . , t
cpvp) = tc̃iwi(v1, v2, . . . , vp) = tc̃iui

where, c̃i = c1|ui|v1 + c2|ui|v2 + . . .+ cp|ui|vp .
From the construction, tc̃iui ∈ K and taiui ∈ K as H 6 K. Therefore from (4) we have tc̃i−ai ∈
LKand so also in LM̃ . Again, tc̃iui ∈ M̃ , hence we have,

(5) [tc̃i−ai ]−1tc̃iui ∈ M̃ ⇒ taiui ∈ M̃.

Since, i is arbitrary (5) holds for every i = 1, 2, . . . , r.

r̃k(M̃) = r̃k(M̃π) + dim(LM̃ )
= (p− 1) + dim(LK)
6 (q − 1) + dim(LK)

= r̃k(K).

This proves that ∀H 6 K ∃ M̃ in between, i.e., H 6 M̃ 6 K such that M̃π ∈ AE(Hπ) and

r̃k(M̃) 6 r̃k(K).
So there are infinitely many containing H, but all of them are built over finitely many Kπ’s,
precisely those are in AE(Hπ).

Hence, dc(H) = max
H6K

r̃k(H)

r̃k(K)
= max

H6K
Hπ6algKπ

r̃k(H)

r̃k(K)
, where H,K6fgZm × Fn. �

Given, H = 〈ta1u1, t
a2u2, . . . , t

arur, t
b1 , tb2 , . . . , tbs〉 6 Zm × Fn, let,

A =


a1

a2

...
ar

 ∈Mr×m(Z) and B =


b1
b2
...
bs

 ∈Ms×m(Z).

And let K = 〈tc1v1, t
c2v2, . . . , t

cpvp, L〉 such that L = K ∩ Zm and Kπ = 〈v1, v2, . . . , vp, 〉 >
alg

Hπ = 〈u1, u2, . . . , ur, 〉. Therefore there exists an unique word wi(v1, v2, . . . , vp) = ui and uabi =
(|ui|v1 , |ui|v2 , . . . , |ui|vp) ∈ Zp. Clearly,

wi(t
c1v1, t

c2v2, . . . , t
cpvp) = t

c1|ui|v1+c2|ui|v2+...+cp|ui|vpwi(v1, v2, . . . , vp) = t
c1|ui|v1+c2|ui|v2+...+cp|ui|vpui

And this holds for every ui; i = 1, 2, . . . , r. Let, U ∈Mr×p(Z) and C ∈Mp×m(Z),

U =



|u1|v1 |u1|v2 . . . |u1|vp
...

...
...

|ui|v1 |ui|v2 . . . |ui|vp
...

...
...

|ur|v1 |ur|v2 . . . |ur|vp


and C =


c1
c2
...
cp

 .
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Definition 2.8. For given A ∈ Mr×m(Z) and U ∈ Mr×p(Z) and B ∈ Ms×m(Z), d(A,U , B) =
min{dimL|L 6 Zm,∃ C ∈Mp×m(Z) such that row(A− UC) 6 L and row(B) 6 L}

Proposition 2.9. d(A,U , B) is algorithmically computable.

Proof. We first diagonalize the given matrix U .

U −→ . . . row/column
operations

. . . −→

 d1

. . .

dr

 or,

 d1

. . .

dp

 .

such that, di | di+1; i = 1, 2, . . . , r − 1(/p − 1), depending upon r > p or p > r and let call
this diagonal matrix D. Therefore, there exists P ∈Mr×r(Z) and Q ∈Mp×p(Z) (both P and Q are
invertible) such that D = PUQ. and so U = P−1DQ−1 and let Q−1C = C′, PA = A′.
Hence, rowspace(A− UC) = rowspace(A− P−1DQ−1C). Since Q is invertible, therefore,
rowspace(A− P−1DQ−1C) = rowspace(A− P−1DC′). As P is also invertible, therefore we have,

rowspace(A− P−1DC′) = rowspace(P−1(PA−DC′))
= rowspace(PA−DC′)
= rowspace(A′ −DC′).

In D there are may be several numbers of 1 and 0. Without loss of generality we can assume that,

A′ =


a1
′

a2
′

a3
′

a4
′

a5
′

 , D =


1

d2

d3

d4

0

 , and C′ =


c1
′

c2
′

...
cp
′

 .

Now we have to check whether the following holds or not.

(6)

a1
′ − c1′ ∈ L

a2
′ − d2c2

′ ∈ L
a3
′ − d3c3

′ ∈ L
a4
′ − d4c4

′ ∈ L
a5
′ ∈ L,

for some choices of c1
′, c2

′, c3
′, c4

′. Let L0 = 〈b1, b2, . . . , bs〉. Now if we take, c1
′ = a1

′, clearly,
a1
′ − c1

′ = 0 ∈ L0. Let, L1 = 〈b1, b2, . . . , bs, a5
′〉. We have to check (6) for L1 i.e., whether

a2
′ − d2c2

′, a3
′ − d3c3

′, a4
′ − d4c4

′ are in L1 or not for some choices of c2
′, c3

′, c4
′. If all of them are

not in L1 we will define a map,
φd : Zm −→ Zm

v 7−→ dv

Clearly, φd is a homomorphism. Furthermore, Im(φd) = 〈(d, 0, . . . , 0), (0, d, . . . , 0), . . . , (0, 0, . . . , d)〉 =
dZm6dmZm.

From the construction, d2 | d3 | d4. Therefore,

Zm > d2Zm > d3Zm > d4Zm

Let us consider the maps Πi : Zm −→ Zm�diZm ,
Zm�d4Zm α

−→
Zm�d3Zm β

−→
Zm�d2Zm ,

such that Π3 = Π4α and Π2 = Π3β = Π4αβ. For the appropriate L, we have 〈a4
′Π4, L1Π4〉 6 LΠ4,

〈a4
′Π4α, a3

′Π3, L1Π3〉 = 〈a4
′Π3, a3

′Π3, L1Π3〉 6 LΠ3, and 〈a4
′Π4αβ, a3

′Π3β, a2
′Π2, L1Π2〉 =
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〈a4
′Π2, a3

′Π2, a2
′Π2, L1Π2〉 6 LΠ2. Let, d4 = µd3 and d3 = λd2, i.e., d4 = µλd2. Therefore if

we consider, any L with LΠ4 = 〈a4
′Π4, (a3

′Π3)α−1, (a2
′Π2)β−1α−1, L1Π4〉 it will satisfy all the

conditions of 6. Now a3
′Π3 has µm pre-images in LΠ4 and a2

′Π2 has (µλ)m pre-images in LΠ4.
And we will choose the suitable pre-images of a3

′Π3 and a2
′Π2 among these µm × (µλ)m choices

such that the dimension of LΠ4 is minimal. Let, LΠ4 = 〈ẽ1, ẽ2, . . . , ẽr〉 is the best possible solution
having the minimum dimension. Then, L = 〈e1, e2, . . . , er〉, attains the smallest value for d(A,U),
where ei is any pre-image of ẽi for i = 1, 2, . . . , r of the map Π4. �

Theorem 2.10. For given H6fgZm × Fn,
(a) if rk(H) 6 1, dc(H) = 1.

(b) And if rk(H) > 2, dc(H) = r̃k(H)

min{d(A,UM ,B)+r̃k(M)|M∈AE(Hπ)} .

In particular, dc(H) is algorithmically computable.

Proof. (a) Let for the given H, rk(H) 6 1. Then,

rk(H) 6 1 ⇒ H is abelian

⇒ r̃k(H) 6 r̃k(K), ∀H 6 K6fgZm × Fn
⇒ r̃k(H)

r̃k(K)
6 1

And, this holds for any arbitrary K. If, H = K, we have the equality. Therefore, dc(H) = 1.

(b) As from 2.7, we know that one of the members of AE(Hπ) attains the dc(H), so we first
compute AE(Hπ). And we know that AE(Hπ) is finite and computable. We will abelianize every
ui ∈ Hπ with respect to the basis of M ∈ AE(Hπ) to have the matrix UM . Then we compute

d(A,UM , B) + r̃k(M) and it is computable from 2.9. We will continue this procedure for every

M ∈ AE(Hπ). Let M̃ attains the minimum sum, i.e., min{d(A,UM , B) + r̃k(M)|M ∈ AE(Hπ)}.
Therefore r̃k(M̃) is the minimum among all subgroups whose free part is in AE(Hπ) and containing

H. Then from 2.7, dc(H) = r̃k(H)

r̃k(M̃)
. and this completes the proof. �

Remark 2.11. There are examples of H, for which let M ∈ AE(Hπ) has the minimum reduced

rank among all the members of AE(Hπ) and let M̃ > H such that M̃π = M , but the dc(H) is

not attained by M̃ . In general, it is not true that d(A,UM , B) + r̃k(M) 6 d(A,UM ′ , B) + r̃k(M ′) if

r̃k(M) 6 r̃k(M ′), ∀M,M ′ ∈ AE(Hπ).

Here we will illustrate one of such examples. Let, H = 〈t(−1,0)b2, t(1,0)ac−1ac−1, t(0,1)bac−1〉,
therefore, Hπ = 〈b2, ac−1ac−1, bac−1〉. The Figure 1 presents the Stalling’s graph for Hπ as a
subgroup of F3 and with respect to the ambient basis A = {a, b, c}.

Successively identifying pairs of vertices of ΓA(Hπ) and reducing the resulting A-labeled graph in
all possible ways, one concludes that ΓA(Hπ) has five congruences, whose corresponding quotient
graphs are depicted in Figure 2 Therefore, AE(Hπ) = {Hπ, 〈b, ac−1〉}. Let M = 〈b, ac−1〉, clearly,

(7) r̃k(M) 6 r̃k(Hπ)

Now, A =

 −1 0
1 0
0 1

 and UM =

 2 0
0 2
1 1

 .

Now we first diagonalize the matrix UM .
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UM −→
C2−C1

 2 −2
0 2
1 0

 −→
R1+R2

 2 0
0 2
1 0

 −→
R1−2R3

 0 0
0 2
1 0

 −→
R13

 1 0
0 2
0 0

 = D(say).

I3 −→
R1+R2

 1 1 0
0 1 0
0 0 1

 −→
R1−2R3

 1 1 −2
0 1 0
0 0 1

 −→
R13

 0 0 1
0 1 0
1 1 −2

 = P (say), and

I2 −→
C2−C1

(
1 −1
0 1

)
= Q(say).

Let, H 6 M̃ 6 Z2×F 3 such that M̃π = M and LM̃ = M̃ ∩Z2, i.e., M̃ = 〈tc1b, tc2ac−1, LM̃ 〉, where
c1, c2 ∈ Z2. Therefore,

(8) row(A− UMC) 6 LM̃ ⇒ row(PA−DC′) 6 LM̃ .

Let, C′ =

(
c′1
c′2

)
. From (8) row(PA − DC′) = row{

 0 0 1
0 1 0
1 1 −2

 −1 0
0 2
0 1

 − 1 0
0 2
0 0

( c′1
c′2

)
} = row{

 0 1
1 0
0 −2

−
 c′1

2c′2
0

} 6 LM̃ .
Therefore,

(9)
(0, 1)− c′1 ∈ LM̃

(1, 0)− 2c′2 ∈ LM̃
(0,−2) ∈ LM̃

And all three conditions of (9) are not satisfied if dim(LM̃ ) = 1. Because, if dim(LM̃ ) = 1, LM̃ =
〈(0, 1)〉 as from (9), (0,−2) ∈ LM̃ and c1

′ = (0, 1). Let, c2
′ = (x, y), therefore, (1, 0) − 2(x, y) ∈

〈(0, 1)〉, which is not possible for any choice of x, y. So, dim(LM̃ ) = 2 and as LM̃ 6 Z2, LM̃ = Z2.

Hence, r̃k(M̃) = 2 + 1 = 3. And for the group H itself Hπ ∈ AE(Hπ) and it satisfies (7), but

r̃k(H) = 3− 1 = 2 6 r̃k(M̃) Therefore, not M̃ , H itself attains the dc(H) and dc(H) = r̃k(H)

r̃k(H)
= 1.

3. Degree of Inertia

Theorem 3.1. Let H6fgZm × Fn.
(a) rk(Hπ) 6 1 ⇒ di(H) = 1.
(b) H ∩ Zm 6∞ Zm, rk(Hπ) > 2 ⇒ di(H) =∞.
(c) H ∩ Zm 6l Zm, rk(Hπ) > 2 ⇒ di(H) = l di(Hπ).

First we proof part (a) and (b) of the theorem. And before proving part (c), we need to prove
several lemmas.
Proof of (a). Let, K6fgZm × Fn and LH = H ∩ Zm.

r̃k(Hπ) 6 1⇒ H = 〈tau, LH〉 ⇒ H is abelian⇒ r̃k(H ∩K) 6 r̃k(K)⇒ r̃k(H∩K)

r̃k(K)
6 1, and, equality

holds if H = K. This holds for any arbitrary K. From the definition, di(H) > 1, and this completes
the proof.

Proof of (b). Let, rk(Hπ) = n1, from the hypothesis, n1 > 2
Let, H = 〈ta1u1, t

a2u2, . . . , t
an1un1

, LH〉, where LH = H ∩ Zm and a1, a2, . . . , an1
∈ Zm and

{u1, u2, . . . , un1} be the free basis of Hπ.
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As, Hπ is a free subgroup of Fn, we can draw the Stalling’s graph for Hπ, say Γ(Hπ). For proving
the statement that di(H) =∞ our goal is to construct a family of subgroups KN 6fg Zm × Fn for
every N ∈ N, such that the denominator of the quotient in the formula of di(H), is always 2, i.e.,

r̃k(KN ) = 2 but r̃k((H ∩KN )π) = N , for every N ∈ N. Therefore the numerator of the quotient in

the formula of di(H) depends on N and in particular the rank of r̃k(H ∩KN ) is increased as N is
increased. Now we construct KN6fgZm × Fn, where N ∈ N. But, rk(KN ) doesn’t depend on N .

Let, KN = 〈ta1′u1, t
a2
′
u2, LKN 〉, using n1 > 2. LKN and a1

′, a2
′ ∈ Zm, will be determined later.

Therefore, Hπ ∩KNπ = 〈u1, u2〉.

A =



a1

a2

...

...
an1

 ∈Mn1×m(Z), A′ =

(
a1
′

a2
′

)
∈M2×m(Z).

Let ρ1 : Hπ � Zn1 , ρ2 : KNπ � Z2, ρ3 : Hπ ∩ KNπ � Z2 be the corresponding abelianization

maps. The rows of the matrices P =

(
1 0 . . . . . . 0
0 1 . . . . . . 0

)
and P ′ = I2 =

(
1 0
0 1

)
(of sizes

2× n1 and 2× 2, respectively) are describing the abelianizations of the inclusion maps,

Hπ ∩KNπHπ KNπ? _ιoo � � ι′ // .

See the diagram (10). Let, R = PA− P ′A′ =

(
a1

a2

)
−
(
a′1
a′2

)
=

(
a1 − a′1
a2 − a′2

)
.

And clearly, rk(KNπ) = rk(Hπ ∩KNπ) = 2.

(10)

6

(H ∩KN )π

Hπ ∩KNπHπ KNπ? _ιoo � � ι′ //

Z2Zn1 Z2

ρ3

����

ρ1

����

ρ2

����

/// ///

Z2Zn1 Z2Poo P′ //

Zm

A

""

A′

||

R

��

From the hypothesis, LH6∞Zm, i.e., rk(LH) = r < m, so there exists L̃H such that

LH6fiL̃H6⊕Zm.
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Now take a basis {l1, l2, . . . , lr} of L̃H , such that {d1l1, d2l2, . . . , drlr} is basis of LH for appro-
priate choices of d1, d2, . . . , dr ∈ Z (there is always a basis like this by standard liniear algebra
arguments) and {l1, l2, . . . , lr, . . . , b′} is a basis of Zm. And as we are free to choose A′, i.e., a′1, a

′
2

we will choose a′1 = a1 − b′ and a′2 = a2. Therefore, R =

(
b′

0

)
Now, we construct, KN ∩ Zm = LKN = 〈Nb′〉. Then,
(LH + LKN )R−1 = {(x1, x2) ∈ Z2 | (x1, x2)R ∈ LH + LKN }

= {(x1, x2) ∈ Z2 | (x1, x2)

(
b′

0

)
∈ LH + LKN }

= {(x1, x2) ∈ Z2 | x1b
′ ∈ LH + LKN }

= {(x1, x2) ∈ Z2 | x1b
′ ∈ 〈Nb′〉}

= NZ× Z6NZ2

As, ρ3 is onto, the index will be preserved. So, (LH + LKN )R−1ρ3
−1 = (H ∩KN )π6NHπ ∩KNπ.

Therefore by Schreier Index formula,
r̃k((H ∩KN )π) = N r̃k(Hπ ∩KNπ) = N(2− 1) = N

⇒ r̃k(H ∩KN ) = N + dim(LH ∩ LKN ) > N

⇒ r̃k(H∩KN )

r̃k(KN )
> N/2

So, ∀N ∈ N there exists KN such that r̃k(H∩KN )

r̃k(KN )
> N/2. Therefore, sup

K isfg
H∩K is fg

K 6=〈x〉

r̃k(H∩K)

r̃k(K)
=∞.

Hence, di(H) =∞.

Proof of (c). We first prove that di(H) 6 l di(Hπ). For any arbitrary K =

〈ta′1v1, . . . , t
a′n2 vn2 , LK〉6fgZm × Fn and given H = 〈ta1u1, . . . , t

an1un1 , LH〉 we have

(11)
r̃k(H ∩K)

r̃k(K)
=

dim(LH ∩ LK) + r̃k((H ∩K)π)

dimLK + r̃k(Kπ)

From the hypothesis, LH6lZm ⇒ LH + LK6l′Zm, where l′ 6 l. As before, let ρ1 : Hπ �
Zn1 , ρ2 : Kπ � Zn2 , ρ3 : Hπ ∩Kπ � Zn3 be the corresponding abelianization maps. And let the

(12)

6

(H ∩K)π

Hπ ∩KπHπ Kπ? _ιoo � � ι′ //

Zn3Zn1 Zn2

ρ3

����

ρ1

����

ρ2

����

/// ///

Zn3Zn1 Zn2
Poo P′ //

Zm

A

""

A′

||

R

��
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rows of the matrices P and P ′ (of sizes n3×n1 and n3×n2 respectively) describe the abelianizations
of the inclusion maps; see diagram (12). Let R = PA−P ′A′, where A ∈Mn1×m(Z), A′ ∈Mn2×m(Z)
are the coefficient matrices with the rows {a1, a2, . . . , an1

} and {a′1, a′2, . . . , a′n1
}, respectively.

As in general R is not onto, (LH + LK)R−16l′′Zn3 , where l′′ 6 l′. As, ρ3 is onto
(LH + LK)R−1ρ3

−16l′′(Hπ ∩ Kπ). And, (LH + LK)R−1ρ3
−1 = (H ∩ K)π, hence we have,

(H ∩K)π6l′′(Hπ ∩Kπ). Therefore,

r̃k((H ∩K)π) = l′′ r̃k(Hπ ∩Kπ) = l′′ r̃k(Hπ∩Kπ)

r̃k(Kπ)
r̃k(Kπ) 6 l′′ di(Hπ) r̃k(Kπ)

Using (11) we have,

(13)
r̃k(H ∩K)

r̃k(K)
6

dim(LH ∩ LK) + l′′ di(Hπ) r̃k(Kπ)

dim(LK) + r̃k(Kπ)

Now, dim (LH∩LK)
dim (LK) 6 1 6 l′′ di(Hπ) r̃k(Kπ)

r̃k(Kπ)
= l′′ di(Hπ)

Using Bad Boy’s Lemma from (13) we deduce that,

r̃k(H∩K)

r̃k(K)
6 l′′ di(Hπ) 6 l′ di(Hπ) 6 l di(Hπ)

Therefore,

(14) di(H) = sup
K isfg
H∩K is fg

K 6=〈x〉

r̃k(H ∩K)

r̃k(K)
6 l di(Hπ)

To prove the other inequality, di(H) > l di(Hπ), we will see that, for any given ε > 0, there

exists K 6fg Zm×Fn such that r̃k(H∩K)

r̃k(K)
> l di(Hπ)− ε; this way, di(H) > l di(Hπ)− ε and, if this

works for every ε > 0, we get di(H) > l di(Hπ). Looking at the steps of the above proof, we will
obtain such a K by finding s subgroup with the following properties:

(1) r̃k(Hπ∩Kπ)

r̃k(Kπ)
> di(Hπ)− ε;

(2) LK = {0} (and, this way, l′ = l);
(3) R is onto by choosing appropriate A′ (and, this way, l′′ = l′).

Following the arguments above with such a subgroup K we get what we want:

r̃k(H ∩K)

r̃k(K)
=

dim(LH ∩ LK) + r̃k((H ∩K)π)

dim(LK) + r̃k(Kπ)
=
r̃k((H ∩K)π)

r̃k(Kπ)
=

=
l′′r̃k(Hπ ∩Kπ)

r̃k(Kπ)
=
l′r̃k(Hπ ∩Kπ)

r̃k(Kπ)
=
lr̃k(Hπ ∩Kπ)

r̃k(Kπ)
> l(di(Hπ)− ε).

In order to see that a subroup K satisfying (1)− (3) always exists, we need the following lemmas.

Lemma 3.2. If G be any group and N,M 6 G. Then, [N : N ∩M ] 6 [G : M ], with equality if
MN = G. (If [N : N ∩M ] is finite, then equality holds if and only if MN = G.)
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Proof. Let G = Mx1 tMx2 t ... tMxi = t
i∈I
Mxi; |I| 6∞. Intersecting with N ,

N = t
i∈I

(N ∩Mxi) = t
i∈I′

(N ∩M)yi, for some |I ′| 6 |I|. Because, either N ∩Mxi is empty or a

coset of N ∩M . Furthermore, ∀xi ∈ G, i ∈ I, and for some n ∈ N , m ∈M ,

MN = G ⇒ xi = mn
⇒ n = m−1xi.

Therefore, N ∩Mxi 6= ∅ ∀i ∈ I. �

Corollary 3.3. Let M ′ 6 M 6 Fn and N 6 Fn, then [(N ∩M) : (N ∩M ′)] 6 [M : M ′], and
equality holds if M ′(N ∩M) = M .

Proof. (N ∩M),M ′ are subgroups of M . By Lemma 3.2,
[(N ∩M) : (N ∩M)∩M ′] = [(N ∩M) : (N ∩M ′)] 6 [M : M ′] and [(N ∩M) : (N ∩M ′)] = [M : M ′]
if M ′(N ∩M) = M. �

Lemma 3.4. Given, M = 〈e1, e2, . . . , er〉 6 Fn, where {e1, e2, . . . , er} is a free basis of M and
X 6M with rk(X) > 2. Then, ∃w1, w2, . . . , wr ∈ X such that, M ′ = 〈e1w1, e2w2, . . . , erwr〉6∞M,
or, M ′ = 〈w1e1, w2e2, . . . , wrer〉6∞M ; furthermore in both cases, M ′X = M .

Proof. Let Γ(X) be the Stalling’s graph for X with respect to {e1, e2, ..., er}, the basis of M . We
will choose an edge eε in (there exists at least one) of Γ(X) such that ιeε = �. Let ei

εi = `(eε)
where εi = ±1. And let u be non-trivial reduced word in X and u reads ei

εi as the end label. And
the existence of such word u is explained in the following argument:
Let p = τeε and γ be a closed path at p ∈ V Γ(X) \ {�} in Γ(X) \ {eε}. If eε is a bridge, all the
vertices in the connected component which is not containing the � are of degree at least 2, and
so we can find some γ. On the other hand, if eε is not a bridge, Γ(X) \ {eε} is connected and of
rank > 1 which assures the existence of γ.
Therefore, u = eiu

′ei
−1 ∈ X, or, u = ei

−1u′ei ∈ X, where u′ = `(γ).

Case-1: u = eiu
′ei
−1, εi = +1

Let wj = 1, j 6= i and wi = u = eiu
′ei
−1, so M ′ = 〈e1, e2, . . . , eiwi, ei+1, . . . , er〉6∞M. Because,

the Stalling’s graph for M ′ with respect to the basis {e1, e2, . . . , er} is not complete.

Case-2: u = ei
−1u′ei, εi = −1

Let wj = 1, j 6= i and wi = u = ei
−1u′ei, so M ′ = 〈e1, e2, . . . , wiei, ei+1, . . . , er〉6∞M. Because,

in this case, the Stalling’s graph for M ′ with respect to the same basis set {e1, e2, . . . , er} is also
not complete.

In both the cases of choosing w′is we have, M ′6∞M and either, M ′X >M (As, (eiwi)wi
−1 =

ei), or, XM ′ >M (As wi
−1(wiei) = ei). Therefore, in both cases we have M ′X = XM ′ = M . �

Corollary 3.5. Given N,M 6 Fn, with rk(N ∩M) > 2. Then, there exists M ′6∞M such that for
all finite index subgroups L satisfying M ′ 6 L6dM, we have [(N ∩M) : (N ∩ L)] = [M : L] = d.

Proof. Applying the Lemma 3.4 on M and X = N ∩M 6 M (with rk(N ∩M) > 2), there exists
M ′6∞M with M ′(N ∩M) = M. Then any L with M ′ 6 L6dM, also satisfies L(N ∩M) = M and
so [(N ∩M) : (N ∩ L)] = [M : L] = d. �
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Definition 3.6. For N 6 Fn, Γ(N) denotes the corresponding Stallings graph (whose base point
is denoted �). On it, for a vertex p ∈ V Γ(N) and an element w ∈ Fn, we define pw := τγ, where
γ is the (unique) path starting from p and labeled w, in case it exists; otherwise, pw is undefined.

For N,M 6 Fn, we denote byΓ(N) × Γ(M) the pull-back of Γ(N) and Γ(M) (not necessarily
connected, nor a core graph in general) and by Γ(N)∧ Γ(M) the core of the connected component
of Γ(N)× Γ(M) containing (�,�). It is well known that Γ(N) ∧ Γ(M) = Γ(N ∩M).

Lemma 3.7. If N ∩M has infinite index in N then, there exists v ∈ N such that �v is undefined
in Γ(M).

Proof. Suppose the conclusion is not true, i.e., for every v ∈ N , �v ∈ {p0 = �, p1, . . . , pr} ⊆
V Γ(M). Choosing a maximal tree T in Γ(M) and defining wi = `(T [�, pi]) ∈ Fn for i = 0, . . . , r
(note that w0 = 1), we have N ⊆ M t Mw1 t · · · t Mwr. Intersecting with N , we get N ⊆
(N ∩M) t (N ∩M)v1 t · · · t (N ∩M)vs for some vi ∈ N and s 6 r. Since the other inclusion is
immediate, we have N = (N ∩M) t (N ∩M)v1 t · · · t (N ∩M)vs and so, N ∩M has finite index
in N , a contradiction. �

Lemma 3.8. Let N,M be two finitely generated subgroups of Fn. If rk(N) > 2, � has degree at
least 3 in Γ(N), and N ∩M has infinite index in N then, there exist infinitely many v ∈ N such
that �v is undefined in Γ(M).

Proof. Let ea, eb, ec be three different edges going out from � in Γ(N), say with (pairwise different)
labels a, b, c ∈ X±1, respectively. By Lemma 3.7, there is v0 ∈ N such that �v0 is undefined in
Γ(M). Realize v0 as a reduced closed path γ0 at � in Γ(N) and, without lost of generality, we can
assume it finishes with e−1

a . For α = a, b, c, take a non-trivial reduced closed path ηα at τeα in
the graph Γ(N) \ {eα} (there always exists one because rk(N) > 2), and consider γα = eαηαe

−1
α , a

reduced closed path at � beginning with eα and ending with e−1
α (so, vα = `(γα) ∈ N is a reduced

word begining with α and ending with α−1). By construction, all the products γ0γb,γ0γc, and γαγβ
with α 6= β are reduced. Therefore, all the elements v = γ0, γ0γb, γ0γbγa, γ0γbγaγb, . . . belong to
N and have �v undefined in Γ(M). �

Lemma 3.9. Let N 6fg Fn and N is not cyclic. Then,

di(N) = sup
M6fgFn
M 6=〈x〉

r̃k(N∩M)

r̃k(M)
= sup
M6fgFn
M 6=〈x〉
N
M

r̃k(N∩M)

r̃k(M)
= sup

M6fgFn
M 6=〈x〉

∃v∈N,�v isnot defined inM

r̃k(N∩M)

r̃k(M)

Proof. Given 1 > ε > 0. Let, M = 〈e1, e2, . . . , er〉6fgFn, which is not cyclic and satisfying
r̃k(N∩M)

r̃k(M)
> di(N)−ε/2. 1 > ε > 0⇒ r̃k(N∩M)

r̃k(M)
> 1

2 ⇒ r̃k(N∩M) > 1⇒ rk(N∩M) > 2. Therefore by

Corollary 3.5 there exists M ′6∞M such that ∀M ′ 6 L6dM satisfies [(N ∩M) : (N ∩L)] = [M : L].

And, r̃k(N∩L)

r̃k(M)
= d r̃k(N∩M)

d r̃k(M)
> di(N)− ε/2.

Now, M ′6∞M 6 Fn ⇒ (N ∩M ′)6∞(N ∩M) 6 N. By Lemma 3.7 ∃v ∈ N ∩M such that
�v is not defined in M ′. That is as a path γv starting from the base point (�) is not defined in
Γ{x′is}(M

′), hence as a path it is also not defined in Γ{e′is}(M
′). Because, in Γ{e′is}(M

′) replacing

every petal ei by ei := ei(xi) and by foldings we get Γ{x′is}(M
′). As, N ∩M,M ′ both are subgroups

of M we can draw the pull-back of Γ{e′is}(N ∩M) and Γ{e′is}(M
′) and as a connected component

of the pull-back, we have Γ{e′is}(N ∩M
′).
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Figure 3. Diagram of Y

Figure 4. Diagram of Ỹ = Γ(L)

Let v := v(e1, e2, . . . , er) which is not defined in M ′ ends with ei
εi . And let

Y = Γ{e′is}(M
′) + tail upto the end of γv. See the figure 3.

Pairing all the missing edges in the graph of Y and adding them we will have the complete graph
with respect to the basis of M . Let Ỹ be the completion of Y and L = π(Ỹ ), the fundamental

group of Ỹ . Thus we construct L (see the figure 4) as a finite index (say d) subgroup of M.

Therefore, N ∩ L6dN ∩M
Note that there exists another edge from q to a vertex 6= q labeled ei

εi so, the terminating edge of
γv, i.e., ei

εi is not a bridge.

Now we choose s ∈ N, s >
2(|EeiΓ{e′is}(N∩M)|+rk(N∩L))

ε + 1

Then, we do the s− explosion (see the figure 5 and compare with the figure 4) of the edge ei
εi

(last edge of γv outside of Γ{e′is}(M
′)) to get Ls6sL.

Hence from the construction we have, M ′ 6 Ls6sL6dM ⇒ Ls6sdM ⇒ (N ∩ Ls)6sd(N ∩M).
Finally, let L′s be constructed from Ls by deleting the edge ei

εi (−→ in the figure 5) from p0 to q1

(i.e., from the first block to the second block). Clearly, it is not a bridge, so, r̃k(L′s) = r̃k(Ls)− 1.

The effect in the pull-back is that we loose at most E := |EeiΓ{e′is}(N ∩M)| edges from first

block to second block. And as an effect the rank of the pull-back is decreased by 6 E + rk(N ∩L).
Each rectangle in the figure 6 is Γ(N ∩ L) = Γ(N ∩M) ∧ Γ(L) which is the connected component
of the pull-back Γ(N ∩M)×Γ(L) containing (�,�). And the diagrams of Γ(N ∩M),Γ(N ∩L) and
Γ(N ∩ Ls) are depicted in the Figures 7, and 8 respectively.
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Figure 5. Diagram of Γ(Ls)

Figure 6. Block diagram of pull-back

It contains the pairing of p−→q ∈ L with �−→r ∈ N ∩M (labeled ei) and with some other
edges labeled ei from N ∩M, some like u1−→u2 giving a non-bridge and some other like u3−→u4

giving a bridge.

(1) For those (u1, p)−→(u2, q) ∈ N ∩ L not being bridges, the corresponding deleted edge −→
is not a bridge. And so, this deletion decreases rank by 1 unit.

(2) For those (u3, p)−→(u4, q) ∈ N ∩ L being a bridge, the corresponding deleted edge −→ is
a bridge. And so, for this deletion the rank is decreased by t > 1 units.

Now the total number of such edges in N∩L is at most |EeiΓ{e′is}(N∩M)| and the sum of the t′s

for those being bridges is at most rk(N∩L). Hence, after the deletion of all −→ from N∩Ls we loose

the rank at most by C := |EeiΓ{e′is}(N∩M)|+rk(N∩L). So, r̃k(L′s) = r̃k(Ls)−1 and r̃k(N∩L′s) >
r̃k(N ∩ Ls)− C.
Therefore, we have L′s which is finitely generated, non-cyclic and satisfying the extra condition that
there exists some element v ∈ N such that �v is not defined in L′s and,

(15)

r̃k(N∩L′s)
r̃k(L′s)

> r̃k(N∩Ls)−C
r̃k(Ls)−1

= sd r̃k(N∩M)−C
sd r̃k(M)−1

> r̃k(N∩M)

r̃k(M)
− ε/2

> di(N)− ε/2 − ε/2

= di(N)− ε



18 MALLIKA ROY

Figure 7. Diagram of Γ(N ∩M) and Γ(N ∩ L)

Figure 8. Diagram of Γ(N ∩ Ls)

The second inequality of (15) is true because of the following: s > 2C
ε + 1 so, εs > 2C + ε and

then

εsd · r̃k(M)2 > εs · r̃k(M) > 2C · r̃k(M) + ε · r̃k(M) > 2C · r̃k(M) + ε · r̃k(M)− 2 · r̃k(N ∩M)

and so,

−C · r̃k(M) > −r̃k(N ∩M)− εsd · r̃k(M)2

2
+
ε · r̃k(M)

2
,

sd · r̃k(M) · r̃k(N ∩M)− C · r̃k(M) > r̃k(N ∩M) ·
(
sd · r̃k(M)− 1

)
− ε

2
r̃k(M) ·

(
sd · r̃k(M)− 1

)
,

and therefore, sd·r̃k(N∩M)−C
sd·r̃k(M)−1

> r̃k(N∩M)

r̃k(M)
− ε

2 . Hence the proof is complete by Equation (15) �
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Now we are in position to show that di(H) > l di(Hπ). Since, by Corollary 1.8, conjugating
does not affect the degree of inertia of the subgroup, this is equivalent to showing that di(Hw) >
l di(Hπw), for every w ∈ Fn. Now, since rk(Hπ) > 2, there is at least one vertex in Γ(Hπ) of
degree three or more and, conjugating appropriately, we can assume this is the basepoint.

In order to see di(H) > l di(Hπ), we fix ε > 0 and will construct K 6fg Zm × Fn, where K is

non-cyclic, such that H ∩K is also finitely generated and r̃k(H∩K)

r̃k(K)
> l di(Hπ)− ε. And will do this

in three steps: declare LK = K ∩ Zm = {0}, construct the free part Kπ and, finally, decide the
vectors completing a basis from the free part.

Let us construct the free part Kπ as follows: applying Lemma 3.9 to Hπ, there exists M 6fg Fn

not cyclic, with some h ∈ Hπ such that �h is not defined in Γ(M), and such that r̃k(Hπ∩M)

r̃k(M)
>

di(Hπ)−ε. IfHπ∩M had finite index inHπ then every element inHπ would have a power contained
in Hπ ∩M and so readable in Γ(M), contradicting the existence of h. So, Hπ ∩M 6∞ Hπ. Now,
applying Lemma 3.8 and the fact that � has degree at least 3 in Γ(Hπ), we deduce the existence
of infinitely many such elements h. Take the first m of them (with the form coming from the
proof of Lemma 3.8), and attach the corresponding paths going out of Γ(M) to obtain a bigger
Stallings, and take Kπ to be its fundamental group. Clearly, Kπ is a free multiple of M , more
concretely, Kπ = M ∗ 〈w0, w1, . . . , wm−1〉, where wi = hγiaγbγ

−i
a h−1, i = 0, . . . ,m − 1. Put

n1 := rk(Hπ), n2 := rk(Kπ) = rk(M) + m, and n3 := rk(Hπ ∩Kπ). Note that, by construction,
the pullback of Γ(Hπ) and Γ(Kπ) will contain as a subgraph Γ(Hπ ∩ Kπ) enlarged in the same
way as in picture 9 and, possibly, with some other new closed paths; therefore, Hπ ∩ Kπ =
(Hπ∩M)∗ 〈w′1, . . . w′m′〉 ∗ 〈w0, w1, . . . , wm−1〉, and rk(Hπ∩Kπ) = rk(Hπ∩M) +m′+m, for some
m′ > 0.

Finally we see now that, in our situation, it is possible to complete the construction of K by
choosing the vectors completing a basis of Kπ (i.e., the rows of P ′) in such a way that the map
R = PA− P ′A′ in the diagram becomes onto:

6

(H ∩K)π

Hπ ∩KπHπ Kπ? _ιoo � � ι′ //

Zn3Zn1 Zn2

ρ3

����

ρ1

����

ρ2

����

/// ///

Zn3Zn1 Zn2
Poo P′ //

Zm

A

""

A′

||

R

��

Recall that, in this diagram, P ∈ Mn3×n1
, P ′ ∈ Mn3×n2

, A ∈ Mn1×m and A′ ∈ Mn2×m, where
n3 = rk(Hπ∩M)+m+m′, and we write matrices with respect to the abelianizations of the natural
free bases of Hπ, Kπ, and Hπ ∩Kπ coming from the descriptions above.
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Figure 9. Diagram of Γ(Kπ)

Let, Q be the lower m×m part of the matrix PA and define

A′ =


0

−Im +Q

 .

Then, R = PA− P ′A′ equals ∗
∗
Q

 −
 ∗ 0
∗ ∗
0 Im

 (
0

−Im +Q

)
=

 ∗
∗
Q

 −
 0

∗
−Im +Q

 =

 ∗
∗
Im


and so, it is clearly onto. Now,

l = [Zm : LH ] = [Zm : LH + LK ] = [Zn3 : (LH + LK)R−1] =

= [Hπ ∩Kπ : (LH + LK)R−1ρ−1
3 ] = [Hπ ∩Kπ : (H ∩K)π]

and, therefore,

r̃k(H∩K)

r̃k(K)
= dim(LH∩LK)+r̃k((H∩K)π)

dim(LK)+r̃k(Kπ)
= l·r̃k(Hπ∩Kπ)

r̃k(Kπ)

= l · r̃k(Hπ∩M)+m′+m

r̃k(M)+m

> l · r̃k(Hπ∩M)+m

r̃k(M)+m

> l · r̃k(Hπ∩M)

r̃k(M)

> l · (di(Hπ)− ε),
which is what we wanted to prove.

4. Future plans

In all the results and formulas which I have done during my first year of PhD, the ambient group
is the direct product of a free-abelian group and a finitely generated free group. For the immediate
future, I plan to do a bit more work in this family of groups (namely, develop a Takahasi-type
theorem) and then try to generalize the similar types of results obtained to other bigger and more
complicated families of groups.

First, in Section 4.1. below, I will briefly discuss a list of consequences of Takahasi theorem 2.6
for free groups, already developed in the literature. Then, I will discuss some possible reasonable
extensions of all those results to Zm × Fn.

In Sections 4.2. and 4.3. I give a brief description of several particular candidate families of
groups, where I will try to obtain extensions of some of the above results: semidirect products
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of free-abelian and free groups, and direct products of finitely many factors (not just two) being
free-abelian, or free, or surface groups.

4.1. Takahasi theorem and its applications. Of particular interest to our discussion is the
result given by Takahasi [9] in 1951. The original proof, due to M. Takahasi was combinatorial,
using words and their lengths with respect to different sets of generators. And the more geometrical
proof was done later independently by Ventura in [10] and by Kapovich–Miasnikov in [5]. Takahasi
theorem is an important tool in free groups as there has been several research works where it played
a crucial role in proving of them. Here are some of these applications:

• Computation of the auto-closure of a subgroup H 6fg Fn, namely,

a− cl(H) =
⋂

ϕ ∈ Aut(Fn)
H 6 Fix(ϕ)

Fix(ϕ)

as well as the endo-closure (the same with endomorphisms). This was done by E. Ventura
in [11] where, additionally, an algorithm is given to decide if a given subgroup is the fixed
subgroup of a finite family of autos (or endos) or not, and in the affirmative case, computing
such a family of autos (or endos).

• E. Ventura [7] also proved that, for every autos (or endos) f, g there is another one h such
that Fix(f)∩Fix(g) is a free factor of Fix(h). And in the same paper [7] Ventura conjectured
that the family of fixed subgroups is closed by intersections (i.e., one can always avoid the
free complement). In other words, is Fix(f) ∩ Fix(g) always equal to Fix(h) for some h?
This is still an open problem even in free groups.

• Computation of pro-V closures (like pro-p, pro-solvable, pro-nilpotent, etc) of finitely gen-
erated subgroups of a free group Fn. Consider an extension closed variety V of finite groups
(i.e., a family of finite groups closed under taking subgroups, quotients, and direct prod-
ucts; in other words, for any short exact sequence 1 → A → B → C → 1 of finite groups,
if B ∈ V then A,C,A × C ∈ V). Given such a variety V and an arbitrary group G, one
can put the pro-V topology in G defined (metrically) in the following way: given two ele-

ments g, g′ ∈ G define the distance between them as d(g, g′) = 2−v(g,g′), where v(g, g′) is
the smallest cardinal of a group H ∈ V for which there is a homomorphism ϕ : G → H
separating g and g′, i.e., gϕ 6= g′ϕ (take d(g, g′) = 0 if v(g, g′) = ∞ meaning that there is
no such finite group H). This is a metric in G which induces a topology called the pro-V
topology; typical examples are the pro-finite topology (take V to be all finite groups), the
pro-p topology (take V to be all finite p-groups), the pro-nilpotent topology (take V to be all
finite nilpotent groups), the pro-solvable topology (take V to be all finite solvable groups),
etc.

Let us particularize the situation in the free group, G = Fn. In [6], the authors proved
among other results that, when the variety V is extension-closed (if A,C ∈ V then B ∈
V) then free factors of closed subgroups are again closed subgroups. This automatically
connects with Takahasi theorem because it implies that, for any subgroup H 6fg Fn, its

pro-V closure must be one of the Hi’s, H ∈ AE(H). Using this idea the authors of [6] give
algorithms to compute the pro-finite, pro-p, and pro-nilpotent closures of finitely generated
subgroups of Fn (the computation of the pro-solvable closure is still an open problem).
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Adapting appropriately the notions of “free factor” and “algebraic extension” from free groups
to Zm × Fn, it seems reasonable to be able to:

Project 4.1. Give a version of Takahasi’s theorem for free-abelian times free groups.

If I succeed in this, a natural plan is to try to generalize the above applications of Takahasi
theorem for free groups to my family of groups:

Project 4.2. Give an algorithm to compute auto-closures and endo-closures of finitely generated
subgroups of Zm × Fn. This seems plausible, specially having in mind the explicit description of
all automorphisms and endomorphisms of Zm × Fn given by Delgado–Ventura in [2].

Project 4.3. Is the family of fixed subgroups Zm × Fn in some sense closed under intersections
? Maybe up to “free factors” ? Can such an intersection be not finitely generated ? (remind that
Zm × Fn is not Howson and so, all questions related to intersections tend in general to be more
tricky).

Project 4.4. Consider the pro-V topology in Zm×Fn. Reprove here the fact that, in the extension
closed case, “free factors” of closed subgroups are closed again (with the appropriate notion of “free
factor”), and then extend the algorithms for computing finite, p-, and nilpotent closures, from the
free group to Fn × Zm.

4.2. Semidirect products of the form Zm o Fn.

Definition 4.5. Consider {ta | a ∈ Zm} same as before, i.e., Zm in multiplicative notation, let
A1, . . . , An ∈ GL(m,Z) acting as Ai : t

a 7→ taAi , and consider the semidirect product

G = Zm oA1,...,An Fn = 〈u1, . . . , un, t1, . . . , tm | [ti, tj ] = 1, u−1
i taui = taAi〉

The following is an easy observation for this group G.

Observation 4.6. We have the split short exact sequence

1→ Zm → G→ Fn → 1,

and normal forms w(~x)ta for the elements of G, where a ∈ Zm and w ∈ Fn = F ({x1, . . . , xn}),
computable using taxi = xit

aAi (or, in general, taw(~x) = w(~x)taW , where W = W (A1, . . . , An) ∈
GL(m,Z)).

Proposition 4.7. For every subgroup H 6 G = Zm oA1,...,An Fn, the sub- short exact sequence

1 → Zm → G
π→ Fn → 1

∨ ∨ ∨
1 → LH = H ∩ Zm → H

π→ Hπ → 1

also splits and so, H ' LHoAHπ, where A is the restriction of the defining action Fn → Aut(Zm)
to A : Hπ → Aut(L).

In particular, every H 6 ZmoA1,...,An Fn, n > 2, is of the form H ' Zm′oA′1,...,A′n′ Fn′ for some

n′ ∈ N ∪ {∞} and m′ 6 m.
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The first reasonable step in this family is to study the degree of compression. The arguments
involved in the study and computability of the degree of compression for a subgroup of Zm ×
Fn are purely about the free group (Stallings graphs, fringe, algebraic extensions, etc) or about
linear algebra (PAQ-reduction of integral matrices, linear systems of equations, manipulation of
direct summands, etc). It seems reasonable to think that these arguments will extend and work
in a semidirect product Zm oA1,...,An Fn, just with the matrices making the calculations more
complicated and the arguments more involved. An interesting point here is the fact that, while the
rank of Zm × Fn (i.e., the minimal number of generators) is m + n, the rank of Zm oA1,...,An Fn
could easily be less than this because of the effect of the action matrices. I do not see yet a clear
way to compute/understand ranks of (free-abelian)-by-free groups; maybe the notion of degree of
compression will have to be considered with respect to the invariant dim(ZmoA1,...,An Fn) = m+n
instead of the usual rank. In whatever sense it needs to be considered, the project here is to

Project 4.8. Find formulas and algorithms to compute the degree of compression of finitely gen-
erated subgroups of Zm oA1,...,An Fn.

Other possibilities for future investigation are the search of a Takahasi theorem for semidirect
products (subject to finding a good enough notion of “free factor”, which is not clear at the moment,
and needs more detailed thinking), and study of particular properties of fixed subgroups of auto-
morphisms (subject to being able to obtain a more or less explicit description of all automorphisms
of Zm oA1,...,An Fn):

Project 4.9. Find a god enough notion of “free factor” for subgroups of ZmoA1,...,An Fn and prove
a Takahasi-like theorem for this family of groups. Obtain similar applications as those done for the
free case (see above).

Project 4.10. Find a good enough description of the automorphisms of ZmoA1,...,An Fn and, from
it, analyze special properties of fixed point subgroups of automorphisms in this family of groups
(bounding the rank, compression, inertia, etc, following again the guide of what happens in free
groups).

About degree of inertia I am much more skeptical: our understanding of the degree of inertia
for subgroups of Zm×Fn strongly relies on the diagram of the equation (12) invented by Delgado–
Ventura in [2] to understand arbitrary intersections of finitely generated subgroups. As far as
I know, these arguments do not extend to semidirect products, where the control of intersections
seems to be much more involved, and unknown at the present time. Without a way of understanding
well intersections, it does not seem plausible to try to understand the degree of inertia in semidirect
products.

Delgado-Ventura [1] have built an adaptation of the Stallings automata theory very useful to
work with subgroups of Zm oA1,...,An Fn; they are essentially classical Stallings graphs decorated
with vectors in a clever enough way to keep all the information of the subgroup in a finite geometric
object. It is very possible that this nice construction helps us in our goals within this family of
groups.

4.3. Product groups involving surface groups. I want to give some similar results for the
product groups which are formed not only using Zm and one free group Fn, but also several of
them, and also including several copies of surface groups Sg and NSk at the same time. Surface
groups have similar properties to free groups, and have interesting connections to them so, it seems



24 MALLIKA ROY

reasonable to be able to extend some of our results to this more general family of groups. Some initial
steps into this direction are already done in the literature, specifically investigating automorphisms
and their fixed points (see [4], [12] and [13]).

Definition 4.11. A surface group is the fundamental group, G = π1(X), of a connected closed
(possibly non-orientable) surface X. To fix the notation, we shall denote by Σg the closed orientable
surface of genus g > 0, and by

Sg = π1(Σg) = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉
its fundamental group (by convention, S0 = 〈 | 〉 stands for the trivial group, the fundamental group
of the sphere Σ0); here we use the notation [x, y] = xyx−1y−1. And for the non-orientable case, we
shall denote by NΣk the connected sum of k > 1 projective planes, and by

NSk = π(NΣk) = 〈a1, a2 . . . , ak, | a1
2 · · · ak2〉

its fundamental group. Note that, among surface groups, the only abelian ones are S0 = 1 (for the
sphere), S1 = Z2 (for the torus), and NS1 = Z/2Z (for the projective plane).

It is well known that the Euler characteristic of an orientable surface is χ(Σg) = 2 − 2g, and
of the non-orientable ones is χ(Σk) = 2− k. Hence, all surfaces have negative Euler characteristic
(these are said to be of hyperbolic type) except for the sphere Σ0, the torus Σ1, the projective plain
NΣ1, and the Klein bottle NΣ2, homeomorphic to the connected sum of two projective plains
(these exceptional ones are said to be of Euclidean type).

These surface groups have some interesting properties:

• Any subgroup H of a surface group G either has finite index in G or it is free; and if H has
index d in G, then it is again a surface group with χ(H) = d · χ(G).

• The fundamental group of a non-compact surface is free.
• Let G be a surface group with χ(G) < 0. Then its center is trivial, Z(G) = 1, and the

centralizer of any non-trivial element 1 6= g ∈ G is infinite cyclic, CenG(g) ' Z.

Some results about automorphisms and endomorphisms for free groups (specially those con-
cerning compression or inertia) will work in a similar way for surface groups with negative Euler
characteristic; S0, S1, NS1, and NS2 will usually present special and exceptional behaviour (in
part, due to the structure of the center and centralizers in these cases).

In this direction the first results were given by Jiang-Wang-Zhang [4] in 2011.

Theorem 4.12 (Jiang-Wang-Zhang, [4]). Let G be a surface group with χ(G) < 0. Then
rk(Fix(φ)) 6 rk(G), ∀φ ∈ End(G).

And the result was extended to the following results :

Theorem 4.13 (Wu-Zhang, [12]). Let G be a surface group with χ(G) < 0, and B ⊆ End(G).
Then

• rk(FixB) 6 rk(G), with equality if and only if B = {id}.
• rk(FixB) 6 1

2 rk(G), if B contains a non-epimorphic endomorphism.
• if B ⊆ Aut(G), then FixB is inert in G.

And then, recent results are also given in the inertia direction:
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Theorem 4.14 (Zhang–Ventura–Wu, [13]). (a) Let Fn be a finitely generated free group, let B ⊂
End(Fn) and let β0 ∈ 〈B〉 6 End(Fn) be with rk(β0(Fn)) minimal. Then, Fix(B) is inert in β0(Fn).
Moreover, if β0(Fn) is inert in Fn then Fix(B) is inert in Fn.

(b) Let G be a surface group, let B ⊆ End(G) be an arbitrary family of endomorphisms, let
〈B〉 6 End(G) be the submonoid generated by B, and let β0 ∈ 〈B〉 6 End(G) with image of
minimal rank. Then, for every subgroup K 6 G such that β0(K) ∩ Fix(B) 6 K, we have that
rk(K ∩ Fix(B)) 6 rk(K).

Let us consider the family of groups P consisting in direct products of finitely many free-abelian
groups, free groups, and surface groups, i.e., groups of the form G = G1 × G2 × · · · × Gn, where
n > 1 and each Gi is either Zm with m > 1, or Fn with n > 2, or Sg with g > 2, or NSk with
k > 1. Such a group G is said to be of hyperbolic type if all its factors are hyperbolic, of Euclidean
type if all its factors are Euclidean, and of mixed type otherwise.

A first project is to study the degree of compression of subgroups in this family of groups; for
similar reasons as those given in the case of semidirect products, the study of the degree of inertia
seems to be much more tricky also in the present family of groups:

Project 4.15. Find formulas and algorithms to compute the degree of compression of finitely
generated subgroups of a group G in P (maybe under technical restrictions, if necessary, on the
subgroup and/or on the factors of G).

In the paper [13], Zhang–Ventura–Wu show that any automorphism ϕ of a group G = G1 ×
G2 × · · · × Gn ∈ P of hyperbolic type is always equal to the direct product of automorphisms
of each component, ϕ = ϕ1,× · · · × ϕn, ϕi ∈ Aut(Gi), just modulo permutations of the possibly
repeated factors (Gi = Gj), if any; see Proposition 4.4 from [13] for the exact statement. This result
allows to connect properties of the automorphisms of G with the corresponding properties about
automorphisms of the factors Gi’s. In this sense, [13] contains the following nice characterization:

Theorem 4.16 (Zhang–Ventura–Wu, [13]). Let G = G1×G2×· · ·×Gn ∈ P. Then, rk(Fix(ϕ)) 6
rk(G) for every ϕ ∈ Aut(G), if and only if G is either of hyperbolic or of Euclidean type.

In fact, in the case of mixed type, and copying the idea from Z × F2, one can easily construct
an automorphism ϕ ∈ Aut(G) whose fixed subgroup is even not finitely generated.

[13] also contains partial results in the direction of characterizing which G ∈ P satisfy that
Fix(ϕ) is compressed, or Fix(ϕ) is inert, for every ϕ ∈ Aut(G). Would be nice to complete this
characterization in the spirit of the above theorem:

Project 4.17. Give an explicit characterization of those G ∈ P which satisfy: (i) Fix(ϕ) is
compressed for every ϕ ∈ Aut(G); or (ii) Fix(ϕ) is inert for every ϕ ∈ Aut(G). Study the similar
questions about endomorphisms.

Project 4.18. If it is possible to compute constants m, l ∈ N, depending only on the group G ∈ P
in such a way that, for every ϕ ∈ Aut(G), the subgroup Fix(ϕ) is (m, l)-compressed.
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