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1. Main results
[ Jelelele}

Free groups

It is well known that subgroups of free groups are free ...
H<LF, = Hisfree

but not necessarily of rank < n.

Example

ConsiderFo = (x,y | ) and the normal closure of x,
<x>= (. y2xy 2 yxy L xy T xy, y xR ).

Looking at its Stallings graph

0 Q0QQQQ

we see these generators are a free basis; so, Fy, < Fa.




1. Main results
[¢] lele]e}

The Howson property

Definition
A group G is Howson if, for any finitely generated H, K <t G, the
intersection H N K is, again, finitely generated.




1. Main results
[¢] lele]e}

The Howson property

Definition
A group G is Howson if, for any finitely generated H, K <t G, the
intersection H N K is, again, finitely generated.

Theorem (Howson, 1954)
Free groups are Howson.




1. Main results
[¢] lele]e}

The Howson property

Definition
A group G is Howson if, for any finitely generated H, K <t G, the
intersection H N K is, again, finitely generated.

Theorem (Howson, 1954)
Free groups are Howson.

In other words... the configuration

<<>>

is not realizable in a free group (o means f.g. and e means non-f.g.).




1. Main results
[¢] lele]e}

The Howson property

Definition
A group G is Howson if, for any finitely generated H, K <t G, the
intersection H N K is, again, finitely generated.

Theorem (Howson, 1954)
Free groups are Howson.

In other words... the configuration

<<>>

is not realizable in a free group (o means f.g. and e means non-f.g.).

Observation

Out of 2° = 8 possible such configurations this is the only one
forbidden in free groups.
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Intersection configurations

What about configurations with k > 2 subgroups (k-configurations)?

Using this convention, what about the following 3-configurations?

IOV NN ) St )
(L2} {13 {23)

NS

{1.2,3)

NN

N
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Our main results

Theorem (Delgado—Roy-V., '22)

A k-configuration is realizable in F,, n > 2, < it respects the Howson
property.

Theorem (Delgado—Roy-V. ’'22)
There exist finitely presented intersection-saturated groups.




1. Main results
[e]e]e]e] ]

Formal definitions

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write X = Xz.




1. Main results
[e]e]e]e] ]

Formal definitions

Definition

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write x = xz. Notation:

e 0 = Xy is the zero-configuration;




1. Main results
[e]e]e]e] ]

Formal definitions

Definition

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write X = xz. Notation:

e 0 = Xy is the zero-configuration;

o 1 = Xp(k)\{0} S the one-configuration;




1. Main results
[e]e]e]e] ]

Formal definitions

Definition

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write X = xz. Notation:

e 0 = Xy is the zero-configuration;

o 1 = Xp(k)\{0} S the one-configuration;

e X7 is an almost-zero k-configuration if Z = {I}.




1. Main results
[e]e]e]e] ]

Formal definitions

Definition

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write X = xz. Notation:

e 0 = Xy is the zero-configuration;

o 1 = Xp(k)\{0} S the one-configuration;

e X7 is an almost-zero k-configuration if Z = {I}.

Definition
A k-configuration X is realizable in a group G if there exists

subgroups Hy, . .., Hk < G such that, for every 0§ +# | C [K],
H; = nNjeH; iff.g. & (/)X = 0. Note that H,,y = H, N H,.

| A\




1. Main results
[e]e]e]e] ]

Formal definitions

Definition

A (intersection) k-configuration is a map x : P([k]) \ {0} — {0,1}. If
T = (1)x~" is the support of x, we write X = xz. Notation:

e 0 = Xy is the zero-configuration;

o 1 = Xp(k)\{0} S the one-configuration;
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Definition
A group G is intersection-saturated if every k-configuration is
realizable in G.

| \
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Free-times-free-abelian groups

G:FnXZm:<X1,...,Xn7t1,...7tm‘[Xi,t)‘]:1,[tj,tk]:1>. J
Normal form: Vg € G, g = w(X1,..., Xa)t& - - - t7m = wt?, where
a=(a,...,am) € Z™. This way, (ut®)(vt®) = uvta+P.

| A

Observation
These groups sit in a split short exact sequence; and, for H < G,

152" 5G5S T, =1,
15 Lly=HNZ" —<H — Hr — 1.

Moreover, H is finitely generated < Hr is so.
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Free-times-free-abelian groups

Proposition (Delgado-V. '13)
Every subgroup H < G admits a (computable) basis

H= (u1t, upt?,. .. u ;o1 . bs),
where {uy, ..., u,} is a free-basis for Hr, a1, ...,ar € Z",0 < r < 0,
bi,...,bs € Z™ is an abelian-basis for Ly = HNZ™, and0 < s < m.

Proposition (Moldavanski)
The groups F, x Z™, n > 2, m > 1, are not Howson.

Are them intersection-saturated?... ... no... but collectively yes ...

Theorem (Delgado—Roy-V. ’'22)

e The set of configs realizable in T, x Z™ increases strictly with m;
e Every configuration is realizable in ¥, x Z™ for m > 0.
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Free-times-free-abelian groups

Theorem (Delgado-V. '13)

There is an algorithm which, on input (a set of generators for)
H,K <y G, decides whether H N K is f.g. and, if so, computes a
basis for it.

(0 Hy)m
"
I = Ihr 0 Ir —2 I

b o b

e h P gn

S A

\
Ly + Ly
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Free-times-free-abelian groups

Theorem (Delgado-V. '13)

There is an algorithm which, on input (a set of generators for)
H,K <y G, decides whether H N K is f.g. and, if so, computes a
basis for it.

(Sketch of proof)
Given (basis for) subgroups Hy, Ho <ty G = IF, x Z, consider

(0 Hy)m
"N
I = IO lyw —2 Hym

A calculation shows that (Hy N Ho)m = (Lt + L2)R~'p~! < Hyw N Hor.

. I’=O71 or
So, HiNHy isfg. < { r>2and (Hy N Hy)m <g Him N Hor. .

y
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Free-times-free-abelian groups

Theorem (Delgado—Roy-V. '22)

There is an algorithm which, on input (a set of generators for)
Hi, ..., Hx <t G, decides whether H; N --- N H is £.g. and, if so,
computes a basis for it.
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Free-times-free-abelian groups

Theorem (Delgado—Roy-V. '22)

There is an algorithm which, on input (a set of generators for)
Hi, ..., Hx <t G, decides whether H; N --- N H is £.g. and, if so,
computes a basis for it.

Proposition

Let M'; M" < T, be such that (M', M"") = M' « M". Then, for any
Hi,....,H, <M <Fpand HY,....H <M’ <TF,,

| \

k

k k p
mj:1 <’—Ill’ I—’I'N> = < ﬂ/’:1 I—Il{’ =1 ’—If/ >

A,
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(M7, M'7y =M1 M'T.
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Observation
The same is not true in G = F,, x Z™, even with M', M" < G in

strongly complementary position, i.e., (M'w, M"7) = M'm « M= and
(M, M"7y =M7o M’
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Example

Consider G = F4 x 72 = <X1,X2,X3,X4 | 7> X <t1,t2 | [t1, t2]>,

M = (x1, X2, 110 M = (x3, x4, 1®1)), and the respective subgroups
. H4 = <X1,X2> HI = <X1 t(1’0),X2> < M, and

° H4/ = <X3,X4>7 Hé/ = <X3t(0’1),X4> < M.

We have H; N Hy = (x;'xpX], i € Z), Hy N HY = (x5 'xax}, i € Z), and
(HiNHy, HINHY) = (HiNHy)« (HYNHy ) = (x; Yexi, X3 'xax | | € Z),

which does not contain x5 ' xoxs € (Hj, HY) = (x1, X2, X3, Xa)
= <Hé, Hé/> = <X1 t(1’0),X2,X3t(0’1),X4>,

.
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Theorem

LetH;,...,H, <G =Fp xZ™ and H/,...,H! <G" =Fp x Z™"
be k > 2 subgroups of G' and G", resp. Write r' = rk ( ﬂ/’-‘:1 Hix),

r’ =rk (ﬂ]'-‘=1 H!'r), and consider (H{, HY'), ..., (Hi, H{) < G' ® G" =
= (Fy *Fp:) x (Z™ @2Z™"). Then, ifmin(r',r’) #1:

N1 (H, H") is f.g. < both N, H and (N, H" are fg.
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Theorem

LetH;,...,H, <G =Fp xZ™ and H/,...,H! <G" =Fp x Z™"
be k > 2 subgroups of G' and G", resp. Write r' = rk ( ﬂ/’-‘:1 Hix),

r’ =rk (ﬂ]'-‘=1 H!'r), and consider (H{, HY'), ..., (Hi, H{) < G' ® G" =
= (Fy *Fp:) x (Z™ @2Z™"). Then, ifmin(r',r’) #1:

N1 (H, H") is f.g. < both N, H and (N, H" are fg.

A\

Observation

Again, not true without the hypothesis min(r’, r') # 1.
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3. (Un)Realizable k-configs.
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Positive results

Define the join of two k-configurations x and x’ as

XX P\ {8} — {0,1}

8 = )
s 0 1f(1)x_7 {Hx' =0,
1 otherwise.
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3. (Un)Realizable k-configs.
00000000

Positive results

Define the join of two k-configurations x and x’ as

xXvx':P(k)\ {8} — {0,1}
0 HEMx=x'=0,
e { 1 :Jtherwise.

N\

Qe

Proposition

Let X' (resp. X"') be k-config. realized by H;, ..., H, < G' = Fp x Z™
(resp. Hy,...,Hy <G" =TFp x Z™ ) with r] = rk (e, Hi) # 1
(resp. r/’ #1)¥ | C [K] with |I| > 2. Then, x’ v X" Is realizable in

G ®G" =Fpyp x Z"+™ by Hy = (Hi, H'), ..., Hk = (Hj, HY),
again satisfying ry # 1V | C [k] with |I| > 2.




3. (Un)Realizable k-configs.

0@000000

Positive results

Proposition
The k-config. Xy is realizable in T, x zZk1,




3. (Un)Realizable k-configs.

0@000000

Positive results

Proposition
The k-config. Xy is realizable in T, x zZk1,

(Sketch of proof)

Hi = (x,y; 1%, ... o) < Fo x ZK1,
Ho = (x,y; 1%, ... %) < Fp x ZK71,

Hio1 = (X, y; ", .. 1%2) < Fp x ZK7,
Hi = (x, yt®; 18278 (818 = (x, pt® . yt™) < Fa x 2571

V.
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Positive resulis

Proposition

The k-config. Xy is realizable in T, x zZk1,

(Sketch of proof)

Hi = (x,y; 1%, ... o) < Fo x ZK1,
Ho = (x,y; 1%, ... %) < Fp x ZK71,

Hio1 = (X, y; ", .. 1%2) < Fp x ZK7,
Hi = (x, yt®; 18278 (818 = (x, pt® . yt™) < Fa x 2571

Corollary

Any almost-zero k-config. x,, is realizable in ¥, x Z!%1=" by subgroups
Hi, ..., Hy further satisfying rk (e, Him) # 1, for every 0 # | C [K].
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Positive results

Theorem (Delgado—Roy-V. '22)

Every k-configuration xz is realizable in F, x 2, for n > 2 and
m >3 el = 1)

(proof)

e Decompose xz = X, V-V Xy, whereZ = {h,..., I;};
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Positive results

Theorem (Delgado—Roy-V. ’'22)

Every k-configuration xz is realizable in F, x 2, for n > 2 and
m >3 el = 1)

\

(proof)

e Decompose xz = X, V-V Xy, whereZ = {h,...,I;};

o realize each x; inFo x ZW=1, j =1, r;

e put together in a strongly complementary way. O

| \

Example

Consider x = xz, where T = {{1},{2,3},{1,3,4},{2,3,4}}. Let us
realize itinTFo x Z™ form =0+ 1+ 2 + 2 = 5. Decomposing x, we
have

X = X1} V Xq2.33 V X{134} V X{234}-

A\
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Positive resulis

Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:




3. (Un)Realizable k-configs.
[e]e]e] lelelele]

Positive resulis

Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:
eXpyasH; = (.. u_zuy), Hy={1}, Hy={1}, H, = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;




3. (Un)Realizable k-configs.
[e]e]e] lelelele]

Positive resulis

Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:
expyasH, = (... ,uo,u ), Hy={1}, Hy = {1}, H, = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;

o X(23) as H} = {1}, HY = (uo, r), Hy = (uo, s ), Hy = {1}, all
inside G" = (up, uy; t®) < Fp x Z5;




3. (Un)Realizable k-configs.
[e]e]e] lelelele]

Positive resulis

Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:

e X1y asH = (... ,up,u 1), Hy={1}, Hy = {1}, H; = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;

® Xq2,3) @s HY = {1}, Hy = (uo, uy), Hy = (uo, uyt®), HY = {1}, all
inside G" = (up, uy; t®) < Fp x Z5;

® X11,3,4} as H" = (uo, us; te3), Hé” = {1}, Hé” = (U, Ug; 1%2),

H" = (Up, ut®2; 12=%2) all inside G = (us, Us; 1°2, 1) < Fyp x Z5;
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Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:

e X(1yasHy=(...,upu_y), Hy={1}, Hy = {1}, H, = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;

® X(23} @s HY = {1}, HY = (uo, uy), HY = (uo, u1t®"), HY = {1}, all
inside G" = (up, uy; t®) < Fp x Z5;

® X{1,3.4) @S HY" = (U2, u3; 1), HY' = {1}, Hy" = (U2, us; 1°2),

Hy" = (uo, uste2; te=°2), all inside G = (U, Us; t®2, 1%) < Fp x Z°;

® X234} @s H" = {1}, H}" = (us, us; t%), HY"" = (us, Us; t%),

Hy" = (ug, ust®s; t—%+), all inside G"" = (ua, Us; 1%, 1%5) < Fp X 77,
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Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:
e X1y asH = (... ,up,u 1), Hy={1}, Hy = {1}, H; = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;

® Xq2,3) @s HY = {1}, Hy = (uo, uy), Hy = (uo, uyt®), HY = {1}, all
inside G" = (up, uy; t®) < Fp x Z5;

® X11,3,4} as H" = (up, us; t%2), HY' = {1}, Hy' = (U2, us; t%2),

H" = (U, Ust®?; t2=C2) all inside G = (us, Us; t°2, 1%3) < Fy x Z5;
® Xi234) @S H" = {1}, HY" = (us, Us; t%), H}" = (us, Us; t*),

Hy" = (ug, ust®s; t—%+), all inside G"" = (ua, us; 1%, %) < Fp x 77,
And note that rk (e, Him) # 1, tk (Mg, H'm) #1,

rk (Nie, H"m) # 1, andrk (N, H"'m) # 1.




3. (Un)Realizable k-configs.
[e]e]e] lelelele]

Positive resulis

Example (cont.)

InFo = (x,y | —) take the freely independent words u; = y~/xy! € Fo,
j € Z. Let{eq,e2,e3,€4,€5} be the canonical basis for Z°. Realize:
e Xy asH, = (...,u_,u_+), Hy= {1}, Hy = {1}, Hy = {1}, all
inside G' = (...,u_p,u_1; —) < Fa x Z5;

® Xq2,3) @s HY = {1}, Hy = (uo, uy), Hy = (uo, uyt®), HY = {1}, all
inside G" = (up, uy; t®) < Fp x Z5;

® X11,3,4} as H" = (up, us; t%2), HY' = {1}, Hy' = (U2, us; t%2),

H" = (Up, ut®2; 12=%2) all inside G = (us, Us; 1°2, 1) < Fyp x Z5;
® Xi234) @S H" = {1}, HY" = (us, Us; t%), H}" = (us, Us; t*),

Hy" = (ug, ust®s; t—%+), all inside G"" = (ua, us; 1%, %) < Fp x 77,
And note that rk (e, Him) # 1, tk (Mg, H'm) #1,

rk (Nie, H"w) # 1, andrk (N, H/"'w) # 1. Therefore, we can
realize x by the following subgroups
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Positive results

Example (cont.)

Hy = (... U_2,U_1, U, Us; t%3),
Hz> = (uo, uy, Us, Us; 1),

Hs = (uo

Hy = (

of GG ®G"®G" <Fp x 75,

Uy, Uy 1%, Un, U3, Uy, Us; %2, 154),
Uo, U3l‘ez7 Uy, U5te4; t83—92’ te5—e4>'
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Positive results

Example (cont.)

= (...,U_2,U_1, U, Ug; %),

(Uo, Ut, U, Us; 1°%),

(Up, Ut t®', Up, Us, Uy, Us; 192, 1%4)
<U2 U3t u4,u5te4;te3—e2’te5—e4>'

of GG ®G"®G" <Fp x 75,

F2 x (@, Z) is intersection-saturated.
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Positive results

Example (cont.)

= (...,U_2,U_1, U, Ug; %),

(Uo, Ut, U, Us; 1°%),

(Up, Ut t®', Up, Us, Uy, Us; 192, 1%4)
<U2 U3t u4,u5te4;te3—e2’te5—e4>'

of GG ®G"®G" <Fp x 75, ]

F2 x (@, Z) is intersection-saturated.

Theorem (Delgado—Roy-V. '22)

There exist finitely presented intersection-saturated groups.
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Positive results

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.
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Positive results

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.

(Proof 1)
e Consider Thomson’s group F;
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Positive results

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.

(Proof 1)

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;
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Positive results

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.

(Proof 1)

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;
o therefore, > x F is intersection-saturated.
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Positive results

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;

o therefore, > x F is intersection-saturated. O
o (Need to take Fox because F does not contain IF».)
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Positive resulis

Theorem (Delgado—Roy-V. '22)
There exist finitely presented intersection-saturated groups.

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;

o therefore, > x F is intersection-saturated. O
o (Need to take Fox because F does not contain IF».)

(Proof 2)

e Consider G = ( @y, Z) x4 Z, where o is the automorphism given by
right translation of generators;
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Positive resulis

Theorem (Delgado—Roy-V. ’'22)

There exist finitely presented intersection-saturated groups.

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;

o therefore, > x F is intersection-saturated. O
o (Need to take Fox because F does not contain IF».)

(Proof 2)

e Consider G = ( P, Z) X Z, where « is the automorphism given by
right translation of generators;

e G is recursively presented so, it embeds in a finitely presented
group, G — G';
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Positive resulis

Theorem (Delgado—Roy-V. ’'22)

There exist finitely presented intersection-saturated groups.

e Consider Thomson’s group F;
o it is well know to be finitely presented and to contain ®y,Z;

o therefore, > x F is intersection-saturated. O
o (Need to take Fox because F does not contain IF».)

e Consider G = ( P, Z) X Z, where « is the automorphism given by
right translation of generators;

e G is recursively presented so, it embeds in a finitely presented
group, G — G';

e [F> x G’ is finitely presented and intersection-saturated. O




3. (Un)Realizable k-configs.
00000080

An obstruction

LetH,...,Hk < G =T, x Z™. Suppose that, for ) # I, J C [k], H,
and H, are f.g. whereas Hy,y = Hin Hy is not. Then, 3i € |, 3j € J s.t.
Li = HiNZ™ and L; = H; N Z™ both have rank strictly smaller than m.




3. (Un)Realizable k-configs.
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An obstruction

Lemma

LetH,...,Hk < G =T, x Z™. Suppose that, for ) # I, J C [k], H,
and H, are f.g. whereas Hy,y = Hin Hy is not. Then, 3i € |, 3j € J s.t.
Li = HiNZ™ and L; = H; N Z™ both have rank strictly smaller than m.

v

Proposition

Let x be a k-config. and 0 # Iy, ..., I, C [k] be r > 2 subsets s.t.
Vielr, (hu---UlU---Ul)x=0,but(hU---Ul)x =1. Thenx is
not realizable in F,, x Z'—2.

o’




3. (Un)Realizable k-configs.
00000080

An obstruction

Lemma

LetH,...,Hk < G =T, x Z™. Suppose that, for ) # I, J C [k], H,
and H, are f.g. whereas Hy,y = Hin Hy is not. Then, 3i € |, 3j € J s.t.
Li = HiNZ™ and L; = H; N Z™ both have rank strictly smaller than m.

\

Proposition

Let x be a k-config. and () # Iy, ..., I, C [k] be r > 2 subsets s.t.
Vielr, (hu---UlU---Ul)x=0,but(hU---Ul)x =1. Thenx is
not realizable in F,, x Z'—2.

o’

Corollary

i

The 3-configurations are not realizable in ¥, x 7Z.

A\




3. (Un)Realizable k-configs.
0000000e

An obstruction

Proposition

The k-configuration X, is realizable in ¥, x 7Z5=1, but not in

Fp x Zk=2.

Hence, the set of configurations realizable in F, x Z™ increases
strictly with m.




4. The free case

Outline

© The free case



4. The free case
[ Jolelele}

More on configurations

Definition
Let x be a k-config. and let i € [K]. Its restriction toi = [K] \ {i} is the
(k — 1)-configuration

X P(IKIN{IH\ {2} — {0,1}
I — (Dx.




4. The free case
[ Jolelele}

More on configurations

Let x be a k-config. and let i € [K]. Its restriction toi = [K] \ {i} is the
(k — 1)-configuration

X P(IKIN{IH\ {2} — {0,1}
I — (Dx.

Definition
Given two k-configurations x, X' and § € {0,1}, we define

| \

xHBsx': P(lk+1])\ {o} — {0, 1}

(x ifk+1¢1,
[ {(l\{k+1})x’ if{k+1} C 1,
5 if {k+1} =1,

a (k + 1)-configuration.
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4. The free case
[¢] lele]e}

More on cofigurations

Definition

Let x be a k-configuration, and i € [k]. The index i is said to be
0-monochromatic (in x) if (I)x = 0 VI C [k] containing i; i.e., if

X =X Ho 0. Similarly, the index i is said to be 1-monochromatic (in

X)ifx = x|7HH1 1.
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[¢] lele]e}

More on cofigurations

AN
ARG
Definition

Let x be a k-configuration, and i € [k]. The index i is said to be
0-monochromatic (in x) if (I)x = 0 VI C [k] containing i; i.e., if
X =X Ho 0. Similarly, the index i is said to be 1-monochromatic (in

X)ifx = x|7HH1 1.

A\

Lemma

If a k-configuration x is realizable in IF, with n > 2, then the

(k + 1)-configurations x B, 0, x B4 1, X Ho X, and x B4 x are also
realizable in T,

A
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[e]e] lele}

Characterization for the free case

(Proof)

LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:
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Characterization for the free case

(Proof)
LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:

@ x HyO, takelth :H1,...,F/k:Hk, andFIk+1 :{1},'
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Characterization for the free case

(Proof)
LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:

o XEH()O, takelth = H1,...,F/k = Hk, andFIk+1 S {1},’

© X 1, take Hy = Hy + (u,v), ..., H = Hy * (u, v) and
Hit1 =< u>y: Hy,..., H realize x v 0 = x and, for every
i # k+ 1, Hke1 0 Hi = Hikoq which is non-f.g.;
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Characterization for the free case

(Proof)
LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:

@ X o0, take Hy = Hy, ..., Hc = Hx, and Hys1 = {1};

© X 1, take Hy = Hy + (u,v), ..., H = Hy * (u, v) and
Hit1 =< u>y: Hy,..., H realize x v 0 = x and, for every
i # k+ 1, Hke1 0 Hi = Hikoq which is non-f.g.;

@ XMy x, take Hy = Hi, ..., Hc = Hi, and Hys1 = Fr;
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Characterization for the free case

(Proof)
LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:

o XEH()O, takelth = H1,...,F/k = Hk, andFIk+1 S {1},’

© X 1, take Hy = Hy + (u,v), ..., H = Hy * (u, v) and
Hit1 =< u>y: Hy,..., H realize x v 0 = x and, for every
i # k+ 1, Hke1 0 Hi = Hikoq which is non-f.g.;

@ x Hyp X, takelth :H1,...,Itlk:Hk, andFlk+1 = e
oxEEmgtakeE:H1,...,ﬁk:Hk,andFlk+1:W. ]
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Characterization for the free case

(Proof)
LetFy «Fy, >~ W U= (wy,ws,...)x (u,v) < F,, and take
Hi, ..., Hc < W < T, realizing x. Now, in order to realize:

o XEH()O, takelth = H1,...,F/k = Hk, andFIk+1 S {1},’

© X 1, take Hy = Hy + (u,v), ..., H = Hy * (u, v) and
Hit1 =< u>y: Hy,..., H realize x v 0 = x and, for every
i # k+ 1, Hke1 0 Hi = Hikoq which is non-f.g.;

@ x Hyp X, takelth :H1,...,Itlk:Hk, andFlk+1 = e
oxEEmgtakeE:H1,...,ﬁk:Hk,andFlk+1:W. ]

v

A k-configuration x is said to be Howson if, for every () # I, J C [k],
(Dx=Wx=0 = (luJd)x=0.

A
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Characterization for the free case

Theorem (Delgado—Roy-V., ’'22)
A k-configuration is realizable in F,, n > 2 < it is Howson.
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Characterization for the free case

Theorem (Delgado—Roy-V., ’'22)
A k-configuration is realizable in F,, n > 2 < it is Howson.

(Proof)

For <, we will do induction on the cardinal of the support of x, say s
(regardless of its size k).




4. The free case
[e]e]e] lo}

Characterization for the free case

Theorem (Delgado—Roy-V., ’'22)
A k-configuration is realizable in F,, n > 2 < it is Howson.

(Proof)

For <, we will do induction on the cardinal of the support of x, say s
(regardless of its size k).

@ Ifs =0 thenx = 0, clearly realizable in F,.
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Characterization for the free case

Theorem (Delgado—Roy-V., ’'22)
A k-configuration is realizable in F,, n > 2 < it is Howson.

(Proof)

For <, we will do induction on the cardinal of the support of x, say s
(regardless of its size k).

@ Ifs =0 thenx = 0, clearly realizable in F,.

@ Given x with | supp(x)| = s and being Howson, define the cone
of x at vertex | C [K], denoted by c/(x), as

a(x): P(k)\{g} — {0, 1}
0 ifdgl

S Wx ifdCl
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Characterization for the free case

Theorem (Delgado—Roy-V., ’'22)
A k-configuration is realizable in F,, n > 2 < it is Howson.

(Proof)

For <, we will do induction on the cardinal of the support of x, say s
(regardless of its size k).

@ Ifs =0 thenx = 0, clearly realizable in F,.

@ Given x with | supp(x)| = s and being Howson, define the cone
of x at vertex | C [K], denoted by c/(x), as

a(x): P(kD\{e} — {0, 1}

0 ifd g |,
S Wx ifdCl
@ Nowleth,..., I, C [k] be the maximal elements in supp(x) (w.r.t.

inclusion). It is clear that x = ¢, (X) V -~V ¢},(X).
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Characterization for the free case

(cont.)

@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.
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Characterization for the free case

(cont.)

@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.

@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.
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Characterization for the free case

(cont.)
@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.

@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.

o Ifly # [K] then any j € [k] \ h is 0-monochromatic, X = X ;& 0,
and we are reduced to realize X35 repeating, we can assume
I = [k]. That is, x is a Howson k-config. s.t. ([k])x = 1.
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Characterization for the free case

(cont.)

@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.
@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.
o Ifly # [K] then any j € [k] \ h is 0-monochromatic, X = X ;& 0,
and we are reduced to realize X35 repeating, we can assume
I = [K]. Thatis, x is a Howson k-config. s.t. ([k])x = 1.
@ Ifx =1 then itis clearly realizable in FF».
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Characterization for the free case

(cont.)
@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.

@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.

o Ifly # [K] then any j € [k] \ h is 0-monochromatic, X = X ;& 0,
and we are reduced to realize X35 repeating, we can assume
I = [K]. Thatis, x is a Howson k-config. s.t. ([k])x = 1.

@ Ifx =1 then itis clearly realizable in FF».

@ Otherwise, take @ # I C [K] with (k)x = 0 and with maximal
possible cardinal.
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Characterization for the free case

(cont.)
@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.

@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.

o Ifly # [K] then any j € [k] \ h is 0-monochromatic, X = X ;& 0,
and we are reduced to realize X35 repeating, we can assume
I = [k]. That is, x is a Howson k-config. s.t. ([k])x = 1.

@ Ifx =1 then itis clearly realizable in F».

@ Otherwise, take @ # I C [K] with (k)x = 0 and with maximal
possible cardinal.

@ Since I, # [K], 3j & kb, and any such index is 1-monochromatic:
in fact, any j € J C [K] satisfies |l U J| > |k| so (kU J)x =1
and, since x is Howson and (k)x = 0, then (J)x = 1.
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Characterization for the free case

(cont.)

@ Ifp > 2, by the induction hypothesis we can realize each of
¢, (X),-..,c,(x) inF2, and so, realize their join X, in F> as well.

@ Hence, we are reduced to the case p = 1: x is Howson and
30+ h C k] with (h)x =1, and (J)x =0 forevery J € I.

o Ifly # [K] then any j € [k] \ h is 0-monochromatic, X = X ;& 0,
and we are reduced to realize X35 repeating, we can assume
I = [k]. That is, x is a Howson k-config. s.t. ([k])x = 1.

@ Ifx =1 then itis clearly realizable in F».

@ Otherwise, take @ # I C [K] with (k)x = 0 and with maximal
possible cardinal.

@ Since I, # [K], 3j & kb, and any such index is 1-monochromatic:
in fact, any j € J C [K] satisfies |l U J| > |k| so (kU J)x =1
and, since x is Howson and (k)x = 0, then (J)x = 1.

@ Hence, by induction hypothesis, X7 is realizable in F», and
X = X‘7BH1 1 as well. ]
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Can we characterize the k-configurations realizable in ¥, x Z™, for
each particular m? At least find an algorithm to decide whether a
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Question

Can we characterize the k-configurations realizable in ¥, x Z™, for
each particular m? At least find an algorithm to decide whether a
given x is realizable in a given abelian dimension m.

Question

Is there a finitely presented intersection-saturated group G which
does not contain Fo x 7™, for some m € N?

| \

Characterize the realizable configurations in your favorite group G.

Taking configurations over N = {0,1,2,...} instead of {0,1} ..., is
any k-configuration realizable in ¥, n > 2, if and only if it does not
violate Hanna Neumann inequality ?
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Quotient-saturated groups

Letl = (V,E,., ,c) be a colored DAG, and let G be a group. We say
that T is realizable in G if 3N, < G for v € V, in such a way that:

(i) for any two vertices u # v, we have N, # N, ;
(ii) for any two vertices u, v, we have u < v ifand only if N, < N, ;
(ii) for any vertex v, the quotient group G, = G/N, is finitely
presented if and only if c(v) = 0.

A group G is said to be quotient-saturated if every finite colored DAG
is realizable in G.

Remark

We want to attach normal subgroups of G to the vertices v € VT in
such a way that directed paths precisely model inclusions.
Alternatively, we want to attach quotients of G to the vertices v € VI
in such a way that directed paths precisely model projections. . .

and colors precisely model f.p./non-f.p. character.
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Quotient-saturated groups

Theorem (Delgado—Roy-V.)

Let G be a hyperbolic group. Any non-elementary, finitely presented
subgroup D < G is quotient-saturated.

Any non-elementary hyperbolic group G is quotient-saturated.
Any non-abelian free group IF,, n > 2, is quotient-saturated.

Non-elementary, finitely presented, non quotient-saturated groups D
do not embed in any hyperbolic group G.
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