Title: Algorithmic problems about subgroups of free
groups

Author: Guillermo Santamaria
Advisor: Enric Ventura
Department: MA Il

Academic year



4

Facultat de Matematiques

i Estadistica

UNIVERSITAT POLITECNICA DE CATALUNYA



Algorithmic problems about subgroups of free
2roups

Guillermo Santamaria

June 20, 2013

The study of the lattice of subgroups of F} changed completely when
J.Stallings published the paper [1] in 1983: in that paper Stallings developed
some special graphs in order to solve several algorithmic problems about
subgroups like the membership or the intersection problem. The eficient and
nice solution using this machinery contrasted with the complex methods de-
veloped before. Stallings constructed his theory using an algebraic topology
approach, and some papers like [2] use automata theory. On the contrary,
in this paper we are going to use purely graph theory: this kind of approach
needs its own definitions and sometimes could be rambling but it’s really
useful when talking about algorithms. So, in the first chapter we develop
Stallings theory from the beginning and in the second one we explain several
algorithmic applications and present some examples.

1 Introduction: the basic theory

The goal of this first chapter is to introduce the key concepts concerning free
groups and graphs and to prove a particular case for graphs of a topology
classical theorem. It says that, if X is a topological space with some connec-
tivity properties then, for any subgroup S of its fundamental group based at
v, S < m(X,v), there is, up to isomorphism, one and only one connected
covering space with a distinguished point w, p : (X, w) — (X, v) such that
p(m1(Xp,w)) = H. There is a topological proof in [3]. This theorem holds
for graphs and we will prove it, in fact, using a graph theory approach. It’s
the basic result used to develop the following chapters.



1.1 Fundamental group of a graph

We are going to consider combinatorial non-oriented multigraphs with dis-
tinguished orientations, i.e.:

A combinatorial graph T' consists of two sets E and V, and two maps
*:F — FEand (,7: E — V such that (e*)* = e and e* # e. On the other
hand ¢(e) = 7(e*) and viceversa.

If v =1(e) or v =r7(e) we will say that the e is incident to v. The
number of incident edges to a vertex v is called the degree of v. If two edges
are incident to the same vertex v, we will say that those edges are adjacent.

An orientation 6 of the edges of I' is a choice of exactly one element in
each pair {e, e*}. If the chosen element is e, we will denote it by (c(e), 7(e))
and we will say that it is oriented forwards with respect to the vertex ¢(e),
otherwise, if the choosen element is e*, we will denote it by (7(e),t(e)) and
will say that it is oriented backwards with respect to the vertex ¢(e).

A map of graphs f : I' — A consists of a pair of functions, f. from
edges to edges, and f, from vertices to vertices, preserving the structure, i.e.:
fe(e*) = fe(e)” and fu(c(e)) = o(fe(e)).

The rose of k petals Ry is the graph with one vertex and k edges with
an orientation, each one labeled by a letter of {a4,...a,}, a given alphabet.
Then, if A is finite and have an orientation, consider a map g from A to Ry,
with & = |E(A)]|, that sends the edges of A to the edges of Ry injectivelly
and preserves orientations. Then, for a map of graphs f : I' — A composing
qr with f we get a map from I' to Ry, that induces an orientation on the
edges of I that is preserved by ¢ o f(e), and assigns the label of g, o f(e) to
e. We will usually think on a map f as those assigned labels in T" by g0 f(e),
with the induced orientation.

A path p in T, of lenght n = |p| with initial vertez u and terminal vertex
v, is an n-tuple of edges of I', p = ejey- - - €, such that 7(e;) = t(e;41) for
i=1...n—1,and u = t(ey) and v = 7(e,). We can also think a path as a
map of graphs from the line graph with n + 1 verticesto I', p: L, — .

In the set of paths of I', P(I'), we can define an operation, called con-
catenation, as follows: for paths p = ejes...e, and ¢ = €le, ... €], with
7(e,) = t(€}) we can form the new path pg = ejeq...e,€] ... e, of lenght
n 4+ m. On the other hand, a map of graphs induces a lenght-preserving
homomorphism from P(T") to P(A).

A round-trip is a path of the form ee*. If a path contains two adjacent
edges forming a round-trip, we can delete it and get a path p’ of lenght



Ip| — 2. Although the round-trip can be in the two first edges of the path
or in the two last, p’ has the same initial and terminal vertex as p. We call
this operation elementary reduction, and write p ~ p’ if p’ is obtained from
p by successive elementary reductions or viceversa. Then, it’s clear that ~
is an equivalence relation, called homotopy. Furthermore, concatenacion of
paths is compatible with homotopy since two homotopical paths have the
same initial and terminal vertices, and then p ~ p’, ¢ ~ ¢/ implies pq ~ p'q’.

From now, consider the set of ~ —classes of paths in I" based in a vertex
v, i.e. with v as initial and terminal vertex, we denote this set as P(I',v)/ ~.
We will choose as a representant of each class the reduced path, i.e. the only
path it contains without round-trips.

By definition of the concatenation operation and its compatibleness with
~, we have that this operation is well defined and closed in P(I',v)/ ~.
Furthermore, each element has an inverse, taking the path of lenght zero
as the identity element: let [p] be an homotopy class, with p the reduced
path. If |[p| = 0, p = v, the path of lenght 0 and [p] is the class of the
identity. If |p| > 0, then p = re, where e is the last edge of p, and define
recursively p* = e*r*, and then [p]~! = [p*], [pl[p]™" = [pp*] = [v] and
[p]7'[p] = [p*p] = [v]. In other words, if p = ejey. .. ¢, take p* = e ... e3¢}
Then P(I',v)/ ~ with the operation of concatenation is a group, m(I",v)
called the fundamental group of T' based at v.

Given a map of graphs f : ' — A, it induces an homomorphism in the
fundamental groups, denoted by the same symbol:

fm(Dyv) = m(A, f(v))

1.2 Computing the fundamental group of a graph

Here we list some classical properties of graphs in order to compute very
easily the elements of their fundamental groups. The graphs are thought as
non-oriented ones: e and e* are identified in one edge that can be reached
forwards or backwards. First we need some definitions about graphs:

A graph is connected if for every pair of vertices there exists a path from
one to the other. A path with the same initial and terminal vertex is called
a circuit and a graph is a forest if the only reduced circuits have lenght 0. A
tree is a connected forest.



Proposition 1.1.

(a) Every connected graph contains a mazximal tree.

(b) Every maximal tree in a connected graph T' contains all the vertices

of T.

(c) Let v be a vertex of a connected graph I, and T C G a mazximal
tree, that exists by (a). Let 0 be an orientation of I'. Then (I, v) is
free with basis.

B={P.|e € 0\E(T)}

Where P, = Tv,u(e)] eT[r(e),v], with T[u,v] the unique reduced path
contained in the tree from u to v.

Proof.

The result follows from Zorn’s lemma. For a connected graph, consider the
set of all its subtrees with the partial order induced by the inclusion of trees
as sets, i.e. T} < T, if and only if T} C T5. For a chain of inclusions of trees,
Ty C Ty C Ty C ..., we have that |, T; is a tree, as follows: suppose by
contradiction that contains a non-trivial circuit, then, since that circuit has
finite lenght by definition, it must lie in a tree of the chain, a contradiction
to the definition of tree. That J;2,7; is connected follows from the same
argument: any pair of vertices must be contained in a tree of the chain, so,
taking a path between them in that tree, we have that that path is containted
in J;2, T; also. So, U=, T; is a tree containing each 7; thus we can apply
Zorn’s lemma and get that there exists a maximal tree in the graph.

To prove (b), let T' be a maximal tree of I' and suppose by contradiction
that exists a vertex v that is not in 7". For an arbitrary vertex w of the tree,
let P =¢€;...e, a path in I' with w and v as initial an terminal vertices,
respectively. This path exists because I' is connected. Let j = min{i =
1 ...n|7(e;) € VI(D\V(T)}, then T" = T' U e; is a tree, otherwise 7(e;)
would be already in T". This contradicts de maximality of T'.

For (c), first of all observe that given two vertices of the graph, there ex-
ists only one reduced path contained in 7" from one to the other, otherwise T’
would contain a non-trivial circuit. This implies that the paths P, are well de-
fined. In order to prove that they generate m(I',v), take P = ejes. .. €, are-
duced v-based path. Let e;, .. .e;, be the edges of P contained in E(G)\E(T),
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and then P can be expressed as P = pie;, ... €;, Pr+1, Where p; are subpaths
inside 7. Then we claim that the path (P., )* ... (P, )*, where the exponent
of (P, )* is positive if e;; € 6 and negative otherwise, is homotopic to the
path P. This follows easily from the uniqueness of the paths between two
vertices in T since P and (P, )* ... (P, )* reach the same edges outside T
in the same order, and there is only one reduced path in T' from e;; to e;,,,,
for 1 < j <k —1, we have that they are homotopic.

To see that it is a free set, consider a path (P, )™ ... (P, )™, withe; = =,
homotopic to the trivial one, with (Peij)aj # (Pe%l)_aﬂ'“, for1<j<n-1.
Then it can be written as: pieypaés...pn_1€n_1p, With p1,...p, reduced
paths in 7" and with p; = T[v,t(e1)] and p, = T[r(e,),v]. Consequently, any
further reduction can only occur at a subpath e;_ip;e;, with p; the trivial
patlaand ej_1 = €;. But then (Peij)ef = (Peij+l)_€j+1, a contradiction.

A basic corollary of c) is that the number of generators of m (I', v), called
the rank of m(I',v), is given by the number of edges of I' that are not
contained in 7. If I is finite we have that rk(m (I',v)) = |E(T)| — |E(T)],
and using that for any finite tree |E(T")| = |V(T")| — 1, then

rk(m (I, v)) = [ED)] = [V(T)| + 1= [EI)] - [V(I)] + L.

1.3 Coverings

We have already talked about Ry, the rose of k£ petals, a graph with one
vertex and k edges, labeled by {aj,as, ... ,a;}, with an orientation. It is
easy to see that the fundamental group of Ry is the free group of rank &
with generators {ai, as, ... ,ax}, called Fi: every reduced path in Ry, can be
read as a word with the labels of its edges as letters. Then, for a graph A,
assigning labels {ay,as, ... ,ax} to its edges and choosing an orientation, we
can construct a map p : A — R; sending each vertex of A to the vertex of
Ry and each edge of A to the edge in Ry with the same label, preserving
orientations.

Suppose A has exactly 2k edges meeting at each vertex, then we will
say that p : A — Ry is a covering if for each vertex k incident edges have
label aq,as,... ,a; respectively and are oriented forwards with respect to
that vertex, and the other k£ edges have label ay,as, ... ,a; respectively and
are oriented backwards. In other words, the local picture near each vertex of



A is the same as the picture of R.

From now, we will say that p(m(A,v)), a subgroup of Fy, is the funda-
mental group induced by the covering A or just the fundamental group of the
covering A. To simplify, we will say also that the pair (A, f : A — Ry) is
a labeled graph and we will usually denote it just by A. The definition of a
map of graphs can be extended to labeled graphs, as follows:

DEFINITION 1.1. Given (I';hy = T' — Ry), (A he © A — Ry) two labeled
graphs, a map of labeled graphs f : I' — A is a map of graphs such that
hQ o f = hl.

We claim now a lemma about coverings that will be very useful in the
following theorems:

Lemma 1.1. Let p: A — Ry be a covering, then given a path P =e;...¢€,
in Ry and u a vertex of A, there exists one and only one path Q =€} ...¢l,

in A, with p(Q) = P and u as initial verter.

Proof. Since eache; € {ay,aq, ... ,a;}™, if the exponent of e; is positive/negative
take the unique edge incident to w and oriented forwards/backwards with
the label of e, called ¢€|. Inductively, given the path @ = €} ...e/ ;| with
u as initial vertex, there exists again one and only one edge e, oriented for-
wards/backwards, depending on the sign of e,, adjacent to e/, ; and with

the label of e, O

A covering of Ry, is a particular case of an immersion: a map from a graph
O, with an orientation, to Ry, such that, for any vertex of ©, at most one
forward incident edge has the label a; and at most one backward incident edge
has the label a;, for any a;. Then, for immersions, the 2k-regularity is not
required. Coverings can be thought as locally bijective maps and immersions
as locally injective.

Given an immersion is easy to construct a covering, extending it with
new incident edges to the vertices that are not 2k-regular and labelling those
edges with the corresponding letters. The problem is that, once we have
done this process, we have new vertices that are not 2k-regular. We can do
it again with the new vertexs and go on. In order to formalize this process
we define the following graph:

DEFINITION 1.2 (k-Cayley graph). For Fj, with generators {ay,...ar} we
define the k-Cayley graph as a labeled graph with vertices in one to one cor-
respondence with the elements of Fy,, V = {v, | x € Fi} and set of oriented
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edges E = {(vg,vp) |z, 2" € Fy, Ja; € {aq,...,ax} such that xa; = z'}.
Then a; is the label of (vy,v.).

Proposition 1.2. The k-Cayley graph is a covering and a tree.

Proof.
That the k-Cayley graph is a covering follows from the definition of its edges:
a vertex v, has two and only two incident edges labeled with the letter a;:
the edge (v, vzq;) and the edge (v,,-1,v,), the first one oriented forwards
J

and the other one oriented backwards. To check that the k-Cayley graph
is connected, take v, v, two vertices. Then, since the k-Cayley graph is a
covering and using Lemma 1.1, there exists a path with v, as initial vertex
and labeled by 2 'y. Then, the terminal vertex of that path is v,. Suppose
that there exists another reduced path from v, to v, labeled by z. Then, we
have that 2z = y, thus z = 27 'y. Then the path from v, to v, is unique and
this implies that the k-Cayley graph is a tree. [

Now, since the k-Cayley is a tree, the deletion of any edge e from the Cayley
produces two different connected components, A., B, with B, containing
the vertex v;. Using this, we make the following definiton:

DEFINITION 1.3 (a;-t—branch of the k-Cayley graph). Given a}t with a; a
generator of Fy,, take e, an edge of the k-Cayley graph, with e = (v1,vq,) if
the exponent of a; is positive and e = (va,,v1) if it is negative. Then, the
ajc—bmnch of the k-Cayley graph is defined as A. Ue. The vertex of A. Ue
whose unique incident edge is e is called the attaching vertex.

Then, given an immersion p : © — Ry, if one of the vertices of © does not
have an incident edge oriented forwards/backwards and labeled by the letter
a;, we just attach the a;r / a; -branch of the k-Cayley by the attaching vertex.
The crucial point is that, since the Cayley graph is a tree, the a;-t—branch
also, and then, using Proposition 1.1, the fundamental group of the new
graph remains the same and the induced fundamental group as well. The
bad news are that the Cayley have as many vertices as the elements of F} and
the branches a i part of the number of elements of F},, so both are infinite
graphs. Then, although we will prove the theorems for coverings, in practice
we will work with immersions for obvious reasons. On the other hand, we
could wonder whether, among all the immersions of a covering, there exists
one containing the same information about the fundamental group as the

covering and of minimum size:



DEFINITION 1.4. Given a map of graphs f : (I'v) — Ry, let Q = {© C
['|veB, f(m(O,v) = f(m(T,v)}. Then the core of I', denoted by C(I'),
is defined as C'(I") = Ngeq ©-

Lemma 1.2. Given a map of graphs f : (I';v) — Ry, then in C(I") every
vertex has degree equal or greater than 2 except, maybe, v.

Proof.
Suppose that there exists w a vertex of C'(I'), w # v, with degree 1 and
let w’ be its adjacent vertex. There exists a reduced v-based path P that
reaches w, otherwise w’ wouldn’t be in C'(T"). But then, the previous and the
following vertex of w in P must be w’, so P is not reduced. [
The following theorem is the key of this theory, because it characterizes the
subgroups of Fj, using the fundamental groups of the coverings of Ry.

Theorem 1.1. Ifp; : (A1, u) = Ry and ps : (Ag,w) — Ry are two connected
coverings of Ry, then Ay and Ay are isomorphic via a map of labeled graphs,

oAy — Ay with f(u) = w if and only if pi(m1 (A1, ) = pa(m1(Ag, w)).

Proof.

If there is an isomorphism f : A; — Ay, with f(u) = w, since f is a map
of labeled graphs we have p; = py o f and hence 7 (A1, u) < m(Ag, w), and
from py = p1 o f7, m(Ag, w) < my(Aq,u).

Conversely, we define f : Ay — Ay, as follows. First f(u) = w. For a
vertex r € V(Ay), r # u, take a reduced path P =e;...¢, from u to r and
consider p;(P). Then, using Lemma 1.1, there exists a unique path @ in
Ao with w as initial vertex, and with p;(P) = p2(Q). Let s be the terminal
vertex of (). Then f(r) = s. In order to see that this f is well defined take
P, P’ two reduced different paths from u to r, and @, Q' two paths from w
with p1(P) = p2(Q) and p1(P’) = p2(Q’). Suppose that s and s, the terminal
vertices of Q and Q' respectively, are distinct. Then, since the path PP~ is
a u-based path and using that m;(Ay,v) < m(Ag, w), there exists a w-based
path K with po(K) = p;(PP'71). Spliting K in two parts, K = K; K, with
pa(K1) = pi(P) and py(Ks) = pi(P'71) |, since K; and Q have the same
initial vertex and the same image by p, and using Lemma 1.1 again, we
get that K; = Q. Analogously, K, = Q"~!, and then s = s’. On the other
hand, to check that f is a map of labeled graphs and is well defined on the
edges, take an edge e = (z,y) of A;. Let P be the reduced path from u to
x and @ the path in Ay from w with p;(P) = p2(Q) and f(x) as terminal



vertex. Then, taking ¢’ the unique edge incident to f(z) with the same label
and orientation as e, we have that p;(Pe) = py(Qe¢’), and hence the terminal
vertex of Qe’ is f(y), thus f(e) = f(¢’). Define f~* : Ay — A; in the same
fashion, using now that m(Ag,v) < 7 (A, w). To see that f~'o f(v) = v
just take P the reduced path from u to v and ) the path in Ay from w with
p1(P) = p2(Q) and f(v) as terminal vertex. Now, f~' o f(v) is again the
terminal vertex of P and then v. The same for f o f~(v).
O]

1.4 Stallings foldings

Our goal now is, for any given subgroup A of Fj, to find an algorithmic way
to construct a covering of Rj whose fundamental group is A. Then, using
Theorem 1.1, it will be easy to construct a bijection between the subgroups
of F} and the coverings of Rj.

Given A =< wy(ai,...a;) >", a subgroup of F,, where w; is a reduced
word, we can think of w; as a tuple of elements of {a; . ..ax}*. Now, construct
a graph as the disjoint union of exactly m line graphs, P, ... , P,,, with lenght
of P; equal to the lenght of w; as a word. Finally indentify the initial vertex
and terminal vertex of all line graphs in one vertex, called v. Then our graph
consists of m v-based paths, Pj,..., P/ and it’s easy to construct a map
from this graph to Ry, sending the fundamental group to A: label the edges
of P! with the letters of the tuple w; and choose orientations according to
their exponents in w;. We call this construction the flower graph of A. The
question now is how we could construct, from this flower graph, an immersion
of F}, with fundamental group A (and then, from that inmersion we will be
able to construct a covering immediately as we explained before). Basically,
the problem is that the local picture near each vertex of the flower graph may
not be the same as the picture of Ry. In other words, there could be two
edges, meeting at the same vertex, with the same label and both oriented
forwards or backwards. These two edges must be incident to v because the
words w; are simplified and then the paths P; can not contain two such edges.
This kind of pair of edges is called inadmissible. The solution to this problem
is due to Stallings, in the paper [1], and is very simple: identifying each pair
of inadmissible edges doesn’t change the induced fundamental group:

Theorem 1.2. Let p: I' — Ry with a defined orientation in I'. If (e, es) is



an inadmissible pair of edges, i.e. e; and ey have one vertex v in common,
both are oriented forwards (backwards) with respect to v and p(e1) = p(ez),
then for p' : TV =T/[ey = e3] — Ry, the map induced by the identification of
ey with es, we have that p'(m (T, [v])) remains the same.

Proof.
For a € p(m(L,v)), let  with p(z) = a. If e is an edge of x different
from e; and es, p'(le]) = p(e). Otherwise, if e is either e; or eq, since

Fler)) = pl(e) = pler) = ples), P([e]) = ple). On the other hand, [z
is a well defined path in I'" because [e] is incident, at least, to the same edges
as e. Then p/'([z]) = a.

Conversely, suppose, without loss of generality, that e; = (v,u) and ey =
(v,w). For a', an element of p/(m(IV,[v])), and [z/] = [x}]...[z]] with
P ([2']) = &, define a path y = r1...7, in T as the concatenation of the
paths r;. In order to define those paths we distinguish two cases, first, u # w.
Then:

(a) If [2}] # [e1] and 2] = (z,u) for some vertex z. Then, if 2 = (u,y) for
j =i+ 1 mod n, define r; = x; and then p(r;) = p'([z}]). And, if 2 = (w,y)
define r; = zle;'ey, and then p(r;) = p(zie;'es) = p(z))ple;Hples) =
plat) = p/([2Y).

(b) If [x}] # [e1] and &} = (z,w) for some vertex x, this case is analogous to
the previous one.

(c) If [x}] # [e1] but 2} is not in one of the previous cases, define r; = 2.

(d) If [27] = [e1] and 2 = [(u,z)] for j =i+ 1 and for some vertex z, then
define r; = eq, and then p(r;) = p(e1) = p(ea) = p'([e1])-
(e) If [#] = [e1] and 2 = [(w, )] for j =i+ 1 and for some vertex z, then

define r; = e5.

It’s easy to check that this path is well defined: if [x}] # [e;] but 2/ is incident
to u or to w (cases (a) and (b)) we look at the next edge of the path and
if it’s not adjacent to « in I', we reach it running through e;'ey or e;'e;.
On the other hand, if [x}] = [e1], we look at the next edge of the path to see
whether it has been reached from e; or from e,. The second case is v = w:
(1) Tf [27] # [e2] define r; = o, Then p(r) = p/([z"]).

(b) If [z}] = [e1] define r; = e;. Then p(r;) = p'([e1]).

The well definition is clear.

Observe that in the first case, after the identification, I has one vertex and

one edge less than I, so:
rk(m(I7, [v])) = [E(I")| = [V(I")[ +1 =
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(IEM)| =1) = (VD) = 1) +1 = rk(m(T,v)).

On the other hand, in the second case I has one edge less but the same
number of vertices than I, so:

rk(m (I, [o])) = [E(T)] = VI + 1= (ED)] = 1) = (VD)) +1 =

rk(m (I, v)) — 1.

O
Although the previous proof seems very technical, it provides us an algorithm
to reconstruct a path in I' from a path of IV = I'/[e; = es], both describing
the same element in the free group Fj. We will use this algorithm in the next
section.

Theorem 1.3. If F}, is the free group of rank k with generators {ay, as, ..., ax },
then exists a set-bijection v : Sp, — Cp, from the set of finitely gener-
ated subgroups of Fy to the set of connected coverings of Ry with a distin-
guished vertex and with finite core, such that p(m(¢(S),v)) = S, for every
{p: (W(9),v) = R} € Sk, and v the distinguished vertex of ¥(S).

Proof.
For S < Fj, let {s1,s2,...,s;} elements of Fj generating S. Construct I'
the flower graph of {si,ss,...,s;} and call v to the central vertex. Then,
m (T, v) = S. Now, by Theorem 1.2 and because I' is finite, exists a fi-
nite chain of foldings I' — IV — --- — I'® with 7, (T,v) = m(I"",v) and
with T™®) immersion of Rj. Attaching a;t-branches of the k-Cayley graph
we can get a covering A. Observe that since I'®) is finite and C(A) is a
subgraph of I®) C(A) is finite. Then, define ¥(S) = (A,v). Conversely,
for a covering with finite core, p : (A,w) — Ry we have that p(m (A, w)) is
finetely generated. Then define ¥y~ (A, w) = p(m (A, w)). Now, () = id
holds automatically, and ¢(¢)~!) follows from Theorem 1.1: if two coverings
have the same fundamental group they are isomorphic as labelled graphs. [J

From now, to simplify, if we talk of p(m(¢(S),v)), v will be the distin-
guished vertex of ¥(.5).
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2 Applications of the covering theory

Here we list and prove some applications of the machinery developed in the
previous chapter. Problems like the membership or the subgroups conju-
gation have a really simple and elegant solution using this techinque, that
constrasts with the complex methods used before the construction was de-
veloped.

2.1 The membership problem

Given a finitely-generated subgroup of a free group, S < Fj, we wonder
whether, given an element a € Fy, that element belongs to S also. In other
words, we wonder whether operating the generators of S and their inverses
in some way, we can get a. The solution of this problem is maybe the best
example of how Stallings construction can be really powerful. The first step
to solve it is to find a basis of S:

Theorem 2.1 (Algorithm to find a basis). Given S a finitely-generated
subgroup of a free group Fy, let p : (©,v) — Ry be an immersion with
p(m(©,v)) = S. Let{by,...,b;} be a basis of m (O, v), then {p(b1),... ,p(b;)}

1s a basis of S.

Proof.
Since p(m(0,v)) = S and the elements {b,...,b;} generate m(0,v) we
get that {p(b1),... ,p(b;)} generate S. To see that they are free generators,
take P = e;...e, a non trivial reduced path in © and suppose that p(P)
is the trivial path. But then, for some i, p(e;) = p(e;r1)™!, so e; and e;1,
are two adjacent edges with the same label and both oriented forwards o
backwards with respect to their common vertex, that is imposible because
© is an immersion. So, for any non-trivial concatenation of {by,... ,b;}, the
image of this path by p is non trivial, thus it’s a basis. [
Algorithmically, if S is generated by {si,...S,}, just construct the flower
graph T of {s1, S, ..., S, }. Then, apply successively Stallings foldings to get
the chain ' — IV — -+ — T'® where I'® is an immersion of Rj with
induced fundamental group A. Find a basis of I'®) using Theorem 1.1 and
using the previous theorem, the image of this basis by p*) is a basis of S.

A first important fact that we can easily get from this machinery is that
every subgroup of a free group is free, as follows. From Theorem 1.3,
given a subgroup S of F}, exists one and only one covering of Ry such that
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p(m((9),w)) = S. But then, since every covering is an immersion and
using the previous theorem, since m(1(S5), w) is free, S is free also.

Now, given a subgroup S and an element a of F}, to check if a belongs
to S becomes a really easy problem: take I'®) the last graph of the chain of
foldings and then an immersion, and try to find P, a v-based path in I'*),
labeled by a. Furthermore: by the definition of immersion, if that path exists,
it’s unique. If a is an element of .S, we can go one step farther and know how
the generators of S have to be operated in order to get a. In order to do this
we use the algorithm defined in the proof of Theorem 1.2.: take a reduced
path in I'® such that p®)(P®)) = a. Then, using the algorithm, construct
a reduced path P*~V in I'*=1 guch that p* 1 (P*=Y) = 4. Interatively,
we can get a path in P in I with p(P) = a. Once simplified, this path is a
concatenation of v-based subpaths, r; .. .7, with p(r;) one of the generators
of S.

Here we have an example:

Example 2.1. Let S be a subgroup generated by {a®, ab,a’ba}. Find free
generators of S, check if the element a=2ba"'ba is containted in S and how
the generators of S must be operated in order to get that element.

First we construct the flower graph of those generators:

a

O =

a \_b/o

/

\Q a

And now we apply successive Stallings foldings in order to get an immersion

with induced fundamental group S. The edges that will be identified in the
next step have a thicker line

13



Observe that rk(S) = |E(T)| — |[V(D)|+1=5—-3—1=3. So {a3, ab, a*ba}
was already a free basis of S. There is a path in the immersion labeled by
a"%ba"1ba, so it’s an element of S. Using the algorithm of Theorem 1.2
this path can be lifted to the flower graph, as follows:

a"%ba"'ba = a *ba" (o a)ba = a*ba"ra (o a)aba =

14



a ?ba"ra"(a ta)aba = a *(ata)bara"'a taaba = (a®) " (ab)(a®) " (a*ba)

So we know how the generators of S must be operated in order to get a=2ba™'ba,
that would be really hard to know without this construction.

2.2 The conjugacy problem

Given S, L subgroups of Fj we want to guess if S and L are conjugate, i.e.
if exists an element z of F} such that S = zLz"1. Obviously, if S and L are
conjugate they have the same rank.

Theorem 2.2. For S and L different subgroups of Fy, and py : (Ay,u) — Ry,
po (A2, w) — Ry two connected coverings with induced fundamental group
S and L respectively, we have that S and L are conjugate subgroups if and
only if Ay is isomorphic to Ay as a labeled graphs but with the image of u
not w. In that case, the conjugator element z is the image of a reduced path
from u to w.

Proof.
If S and L are conjugate with S = zLz7!, let @ be the path in A, with
terminal vertex w and, such that, py(Q)) = z. The existence of this path
follows from Lemma 1.1. Let v be the initial vertex of ). Then, for any
w-based path P, the concatenation QPQ~! is a v-based path, and then we
have that zpo(mi(Ag,w))2z™1 < po(mi(Ag,v)). On the other hand, for any
v-based path P’, the concatenation Q~'P'(Q is a w-based path, and then
27ipa(mi (A2, v))2 < pa(mi(Ag, w)). Thus pa(mi(As,v)) = zpa(mi (Mg, w))e™! =
zLz7! = S. And, since (Aj,u) and (Ay,v) have the same induced fun-
damental group, from Theorem 1.1 we get that (A;,u) is isomorph to
(A2, v) as a labeled graph. Conversely consider the path @ from u to w
in Ay = Ay and let z = pi(Q). For each P, w-based path, we have that
QPQ™" is a u-based path and then zpy(m;(Ag, w))2z™ < py(m((Az,u))). On
the other hand, for each P’, u-based path, Q' P'() is a w-based path and then
(A, w)z < pa(mi(As, w)). Thus zpy(mi(Az, w))z™ = pi(mi (A2, u))
and then S and L are conjugate subgroups with z as the conjugator element.

O

Unfortunately, we can’t define an algorithm using coverings because they
could be infinite. The problem now is that, if we work with the immersion
obtained from the flower graph of L after applying Stallings foldings, the
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previous theorem can be false. In fact, for a conjugate subgroup of L, zLz7!,
there could not exists a path whose image is z in that immersion. We have
to go inside the a;-branches to find it. The next example is quite illustrative:

Example 2.2. Consider S, a subgroup of Fy generated by {b* bab='}. First
of all we compute an immersion with fundamental group S. The flower graph

of S is:

b .
a
b b
DO @a
b b

Recall that, in order to get a covering from this immersion we have to attach

a;-branches of the 2-Cayley graph. So, attaching just some edges of those
a;-branches we will get a new immersion:
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The fundamental group based at that new vertex in black is generated by
{ab*a™!, abab~'a™'} so it’s a conjugate of the first one, but the immersions
are not isomorphic as a graphs.

Observe that in the previous example both immersions are cores with
fundamental group S and aSa~! respectively, so Theorem 2.2 doesn’t work
with cores either. The problem here is that the base vertex of the second
immersion is inside the a;-branch and it could be as deep as we want to.
So, the solution in some way is to forget all the graphs whose base vertex is
in the same a;-branch of the core, and then we will get the isomorphism of
Theorem 2.2. In order to do this, we already know that in a core the only
vertex that can have degree 1 is the base vertex. If this happens, it means
that the base vertex is in a aj-branch, so let’s try to move it outside. Let
R be a reduced path with the base vertex v as initial vertex and such that
the only vertex of degree equal or greater than 3 is its terminal vertex, called
r(v). This path always exists if the fundamental group of the core is not the
trivial one and is unique because the degree of the basic vertex is 1. In some
sense, we are moving the base vertex v to r(v). Then the core without R has
no vertices of degree 1. We formalize this in the following definition:

DEFINITION 2.1 (Reduced core). Given a map of graphs f : (I';v) — Ry,
let C(T') be its core. If v has degree equal or greater than 2 in C(I') then,
define the reduced core of I', denoted by C.(I') as C.(I') = C(I"). Otherwise,
let R be the path defined above and r(v) its terminal vertex. Then define
C.(I') = C(I)\(R\r(v)) and take r(v) as a distinguished vertex.

Then observe also that the reduced core have only vertices of degree equal
or greater than 2. So, once we have moved the basic vertex of the core outside
the a;-branch, Theorem 2.2 holds:
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Theorem 2.3. For S and L different subgroups of Fy, and py : (A1, u) — Ry,
po (A2, w) — Ry two connected coverings with induced fundamental group
S and L respectively, we have that S and L are conjugate subgroups if and
only if C.(Ay) is isomorph to C,.(A2) as a labeled graphs. In that case, the
conjugator element z is p1(R) f1(Q)p2((R')™') where R and R' are the paths
of the Definition 2.1 and Q is a path from r(u) to r(w).

Proof.
If S and L are conjugate subgroups, using Theorem 2.2, A; and A, are
isomorphic as a labeled graphs. Then, since the reduced cores are in one
to one correspondence with the connected coverings, C,.(A;) and C,.(Ag) are
isomorphic as a labeled graphs as well. Conversely consider the path @) from
r(u) tor(w)in C.(A1) = C.(As) and let z = p;(Q). Using the same argument
as in the proof of Theorem 2.2 we get that:

2p2(m1(Cr (M), 7(w)))z™h = pr(mi(Cr (A1), 7(w))).
Now, let R and R’ be the paths of the Definition 2.1, then

711(Cp(Ar,7(u)) = R (C(A), w)R, 71(Cpr(Ag),r(w)) = (R) 1 (C(Ay), w)R'.
And then:

2pa (R )pa(mi (C(As), w))pa(R) 2" = pr(R™)pi(m (C(A2), u)py (R) <
(p1(R)zpa(R1))pa(mi(C(Az), w)) (p2(R)z "' pr(R™)) = pi(mi(C(Ag),u) &

(p1(R)zpa(R)) L(pa(R)z"'pi(R7Y)) = .

2.3 The normal subgroup problem

Recall that a subgroup N < Fj is called normal if it is invariant under
conjugation by every element of Fj. In other words, for any z, element of
F,, zNz7! = N. This means that, before the Stallings construction was
developed, the normality of a subgroup was a property really hard to check.
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Using graphs, on the contrary, it becomes astonishingly easy. Using the
previous section we know that to conjugate a subgroup by an element a means
to change the base point of its covering from v to v’, the terminal vertex of a
as a path. Then, if the subgroup is normal, the induced fundamental group
using this new base point remains the same. In other words, the v’-based
labeled paths are in one to one correspondence with the v-based labeled
paths, and thus, using Theorem 1.1, we will get that there exists a labeled
graph automorphism, sending v to v'.

Theorem 2.4. Giwen N, a subgroup of F}., we have that N is normal if and
only if for any w, vertex of (¢(N),v), there exists an isomorphism of labeled

graps, [ 9(N) = (N), with f(v) = f(w).

Proof.

Let p : (¢(N),v) — Ry, be the connected covering of N and w a vertex of
¥(N). Then, since )(N) is connected, there exists a reduced path P from
v to w. Let a € F), with a = p(P). Then, using Theorem 2.2, we have
that aNa™! has covering (1(N),w). Thus, using that N is normal we have
know that N = m(¢(N),v) = m (¢ (N),w). So, using Theorem 1.1 there
exists an isomorphism of labeled graphs fi)(N) — ¥(N) with f(v) = f(w).
Conversely, for any a element of Fj, there exists a path P in ¢(N) with
p(P) = a and v as initial vertex. Then, let w be the terminal vertex of P.
Using that p : (¢(N),w) — Ry is the covering of aNa ™!, then, by Theorem
1.1 again, N =aNa~!. O

2.4 The intersection problem

Given S, L subgroups of Fj, given an element a € Fj, we wonder again
whether that element belongs to S N L. Or, more generally, we want to
find generators of S N L. The procedure is similar to the previous one:
construct the covering of the subgroup S N L and find generators of the
induced fundamental group. In order to do this we need some definitions:

DEFINITION 2.2 (Product of a map of graphs). Given f; : (I'1,u) — Ry and
fo i (Tg,w) — Ry, two maps of graphs with distinguished vertez, we define the
product graph, I'y x I'y, as the graph with set of vertices Vr,xr, = Vp, X Vp,
and set of edges E = {((u1,us), (w1, ws)) | (u1,wy) € FEr,, (us,ws) € Er,
and fi(up,wy) = folug,ws)}. Then, the product of the maps fi and fo,
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fi x fo : 'y x 'y = Ry, is the map sending each edge ((u1,us), (wy,ws)) to

fl(ubwl)-

DEFINITION 2.3. The projection maps x : Er,«xr, = Er, and y : Epr,xp, —
Er, are defined as x((uy,us), (wy,ws)) = (u1,wr) and y((u1,us), (wy,ws)) =
(Ug, U}Q).

Theorem 2.5. Given S, L subgroups of Fy, if p1 : (A1,u) — Ry and ps :
(A2, w) — Ry are two coverings with induced fundamental group S and L
respectively, and if Cyw) © Ay X Ay is the connected component containing
the vertex (u,w), then (p; X P2)|Cluy © Cluaw) — B is a covering with induced
fundamental group S N L.

Proof.

That Cyw) is a covering follows inmmediately from the definition of the
product of maps and from the fact that A; and A, are coverings. To see
that the induced fundamental group is S N L, let p; X ps(a) be an element
of p1 X pa(m1(Cuwy, u X w)), then projecting every edge of a by the maps
and y, we get a u-based path P, in A; and a w-based path P, in Ay such
that p1(P;) = p2(P) = p1 X pa(a) by the definition of the product of maps.
Then p; X pa(a) € p1(m1 (A1, w)) N pe(m(As, w)) = AN B. Conversely, if Py
is a u-based path in A; and P, a w-based path in Ay with pi(P)) = pa(Ps),
then the graph product of p; and ps contains a (u, w)-based path in Ay X Ay
that induces the same element in Ry as P, and P,. [

Then, once we have an immersion with induced fundamental group S N
L, we can find easily a basis. It’s easy to check that the product of two
immersions is also an immersion, so, algorithmically, if S and L are finite
generated, C(A;) and C(Az) are finite cores, and then the corresponding
connected component of C'(A;) x C(Ay) will be a finite inmersion of SN L,
where we can get a basis. On the other hand, the graph A; x Ay could have
more than one connected component. Althought in the previous theorem we
only need the connected component containing (u,w), we can wonder what
the other connected components mean. We can choose properly a vertex
u’ of Ay so that (v/,w) can lie in any of the other connected components.
And the same can be done for a vertex w’ of A;. Then using the previous
section, we know that (A1, u) and (A, ') induce conjugate subgroups, so the
components of Ay X A; mean intersections of conjugates subgroups of A; and
As. Here we have one interesting example:
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Example 2.3. Given S =< b,a* a*bab~ta > and L =< a?,ab,a?ba >,
compute S N L. L is the same subgroup of the Example 2.1 and we have

already get the immersion with S as fundamental group, so the product of
both covering becomes:

a
; e.m -0«

b

So, therk(SNL) = |E(' xT')|—|V(['y xI'y)|+1=16—12+1 = 5. Taking
a mazimal tree and using Proposition 1.1 we get the following basis of SN L:

{b71a®y, a®, a*ba’b a2, a®ba*b 1 a’ba®b a2, a*ba b taba tha*b a2}

So, oberserve that the rank of the subgroup intersection is greater than the
ranks of S and L.

This example proves another surprising fact about the free group: the
rank of SNL can be larger than the rank of S and the rank of L. Nevertheless,
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we know that if the rank of S and the rank of L are finite, then the rank of the
intersection is finite: since C'(A1) and C(Ay) are finite graphs, C'(A;) x C(Ay)
as well, and then the rank of S N L is finite also. But, can it be arbitrarily
large? The answer is no, and, in fact, it can be bounded in terms of the
product of rank of S and rank of L. Before this theorem we need a definition:

DEFINITION 2.4. (Reduced rank) If S is a free group with rk(S) = k, we
define rk(S) = min{0,k — 1}

And, with this definition:

Theorem 2.6 (Hanna-Neumann). Given S, L subgroups of Fy, then

~

k(S N L) < 2rk(S)rk(L) (1)
In order to prove that result we need a pair of lemmas:

Lemma 2.1. Gwen I' a connected finite graph, then:
(a) If T is not a tree, then 3, oy ry(d(v) —2) = 2rk(T).
(b) If T is a tree, then 3_, oy (d(v) — 2) = —2.

Proof.
We already know that rk(I') = |E(T")| — |V(I')| 4+ 1, then if I is not a tree:
~ 1 1
k(D) = [ED) = VD) =5 >, d)=[VID)|=5 ) (dw)-2).
veV(T) veV(T)

And if T is a tree:

1 :% S @) -2, 3 (dw)—2) = -2

veV () veV (D)

O
The following lemma bounds the degree of (u,v) in terms of the degree of u
and v.

Lemma 2.2. Given Ay, Ay, two coverings with finite generated subgroup.
Consider C,.(A1) X Cy.(Ag), then, for every (v,w) € C.(A1) X Cy(Ag), d(v, w)—
2 < (d(v) = 2)(d(w) - 2).
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Proof.

Observe that, since C,(A;) and C,(Az) are immersions, for every edge in-
cident to v there exists at most one edge incident to w with the same la-
bel. Then, since the number of edges incident to (v,w) is the number of
pairs of edges incident to v and to w with the same label, we have that
d((v,w)) < min{d(v),d(w)}. Now, suppose without loss of generality that
d(v) < d(w). Recall that, by the definition of reduced core the degree of
each vertex of C.(A;) and C,.(Ay) is equal or greater than 2. Then, if
d(w) = 2 the equation holds automatically. If d(w) > 3, we have that
d((v,w)) =2 < min{d(v),d(w)} —2 < d(v) — 2 < (d(v) — 2)(d(w) — 2) since
dw)—2>1. O

With this lemmas we can already proof the theorem:

Proof.
Let py : (A, u) — Fy and py : (A2, w) — F) be two coverings with induced
fundamental group S and L respectively. Let X = C{, ) be the connected
component of A; x Ay containing the vertex (u,w), then, since X is a covering,
we have that p; X po(m (X, (u,w)) and p; X pa(m (C(X), (u,w))) have the
same reduced rank, by definition of core. Now, consider C,(X). Recall that
Cr(X) = C@)\(P\r(u,w)), so [E(C.(X))] — [V(C,(X))] = (|E(C(X)| +
n) = (VX)) + (n+1) = 1). So pr % pa(m(C(X), (w,w))) and py x
pa(m (Cr(X), r(u,w))) have the same reduced rank, equal to the reduced
rank of SN L. N N

Then, if C.(X) is a tree 0 < 2rk(S)rk(L). Otherwise, summing up the
degrees of (u;, w;), the vertices of C,.(X), we get:

S (@unwi)-2) = 2k(SNL)

‘ lemma 2.1
(us,wj)ECH(X)

And then, using Lemma 2.2

> uswi)—2)< Y (d(wy) = 2)(d(w; — 2)) <

(us,wy)eCH(X) (ui,wj)eCH(X)

Y (dw) = 2)(d(w; —2) < Y (d(u) —2) Y (d(w; —2)).

(ui,wj)eC(X) w;j
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Finally, using Lemma 2.1 again:

2k(SNL) <> (dlu;) —2) Y (d(w, —2)) = 2rk(S)2rk(L)

u; wj

Thus:

~

k(S N L) < 2rk(S)rk(L)

This bound was improved by
k(S L) < rk(S)rk(L)

few years ago. An algebraic proof can be found in [4]. Unfortunately, a proof
using only graph theory is not known yet.

2.5 The cosets problem

Theorem 2.7. Giwen S, a subgroup of Fy, then the cosets of S, zS for
z € F}, are in one to one correspondence with the vertices of 1¥(5).

Proof.

Let p: (¥(S),v) — Ry be the connected covering of S. Let z € Fj, be a repre-
sentant of the coset zS. Define fys), our bijection from the cosets of S to the
vertices of 1(.5), as follows. Take the path P in ¢(S) with p(P) = z and v as
initial vertex. Let w be the terminal vertex of P. Then define fy(s)(25) = w.
To see that this construction does not depen on the representant of the class,
take 2" another element of the coset 2.5, and P’ a path in ¢(S) with p(P’) = 2/
and w' as terminal vertex. Then, since zz'~' = p(PP'~') € S, PP'~! must
be a closed path and then the terminal vertex of P must be the inital vertex
of P"~! thus w = w'. To see that fys) is injective, suppose that exists a
coset yS different from 25 with f(zS5) = f(yS) = w, but then there exists
a path @ with p(Q) = y, v as initial vertex and w as terminal vertex, thus
y € zS and then zN = yN using that the cosets are disjoint. On the other
hand, fys) is surjective because ¥(5) is a connected graph. [

A corollary of this theorem is that if S is a subgroup of finite index, i.e.
the number of cosets of F}/S is finite, then the number of vertices of ¥(.5)
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is also finite and vice versa. If the number of vertices of ¢(5) is finite then
1 (S) does not contain any a;-branches of the k-Cayley graph, and then,
once we get an immersion from the flower graph of S applying foldings, that
immersion must be a covering. Otherwise we should attach a;-branches in
order to get a covering, a contradiction to the finiteness of 1(.5).

We can also wonder whether the intersection of cosets is again a coset
and, in this case, how we can obtain an element of that intersection. The
answer of the first question is afirmative:

Lemma 2.3. Giwen S, L, subgroups of Fy, and a,b € F} then aS NbL is
empty or the coset z(S N L) for any z € aS NbL.

Proof.
Suppose that a.S N bL is not empty, and let z € aS NDL. Then exists s € S,
l € L with z=as=0>bl. Letn € SNL, then zn = asn € aS and zn = bln € L
and then z(SN L) < aSNbL. On the other hand, for m € aS N bL with
m = as’ = bl' we have that m = zs~'s’ and m = z{~!l, so, since s~ !s’ € S
and [71' € L, s7's = 71" € SN L, thus aSNOL < z(SNL). Then
z2(SNL)=aSNbL. O

Now, for py : (A1,u) — F) and py : (A, w) — F} two connected coverings
with fundamental group S and L respectively, we consider fy,(aS), fa,(bL)
with the f defined in Theorem 2.7. So fa,(aS) € V(A1) and fa,(bL) €
V(Ag). Then, consider the product graph A; x Aj. Since the connected
component containing (u,w), Cwy € A1 X Ag, is a covering with induced
fundamental group S N L, if the vertex (fa,(aS), fa,(bL)) lies in a different
connected component, using that the vertices of C(,.) are in one to one
correspondance with the cosets of S N L, we get that aS N bL is empty.
If (fa,(aS), fa,(bL)) lies in Cluw), fr xa, (f(@S), f(BL)) is a coset z(S N L)
with z the image by p; X py of a path with (u,w) as initial vertex and
(fa,(aS), fa,(bL)) as terminal vertex.

2.6 Residually finite groups

In this section we prove that Fj is residually finite:

DEFINITION 2.5. A group G is residually finite if for any g element of G
different from 1, there exists a normal subgroup of G of finite indexr not
containing g.
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First of all, for g € F}, let’s construct a finite covering whose induced fun-
damental group does not contain g. Let {ay, ... ,ax} be the generators of Fj,
then we can think of g as a tuple of elements of {ay,... ,ax}*, g = ai . .ai.
Now, construct the covering as follows. First, take two line graphs P, P’
both of lenght n, with edges e;...e, and €] ...¢e/, respectively and initial
vertices v, v' and terminal vertices w, w'. Label the edges e; and €, for
1 < j < n, with the letter a;. Orientate the edge e; forwards with respect to
v if the exponent of a;; in g is positive, and backwards otherwise. Orientate
the edge e;-, for 1 < j < n, in the opposite way: backwards with respect to
v’ if the exponent of a;; in g is positive, and forwards otherwise. Then we
have a map p : PU P’ — Rj, that is an inmersion because the element g was
a simplified word. Now identify v with v" and w with w’ and call this new
graph Q). Observe that ¢ : Q — Ry is still an immersion: the edge e; and €
have the same label but opposite orientations with respect to v. The same
for e, and €/,. Observe also that every vertex of () has degree 2. Finally, we
are going to add edges to () in order to get a covering. We do this in two
steps:

(a) For every x vertex of @ let a, and as be the labels of the two edges
incident to z. a, and as could be the same label. Then, for every letter a;
from the set {ay,...,ar}\{a,, as}, add a z-loop, i.e. and edge (z,z), to Q
with label a;

(b) Consider z = t(e;) = 7(e;—1) and y = v(e}) = 7(e,_;) for 2 < i < n, the
i-th vertex of P and P’ respectively. Observe that e; have the same label as
ey and opposite orientations and the same for e;_; and €;_;. Then, if the
label of e; is the same as the label of e;_1, @ is, after step (a), a covering in
x and y. Otherwise, let a,, as be the labels of ¢;_; and e; respectively. Then,
add two edges, e, f, to ), both incident to x and y, with label a, and a,
respectively. If e; ; is oriented forwards/backwards with respect to x then
e, will be oriented backwards/forwards with respect to y, so orientating
the edge e backwards/forwards with respect to t(e;) we will get that it has
the opposite orientation with respect to t(e}). The same for the edge f and
so ) will be an immersion in x and y.

Then, after those new edges are added to (), we get a covering that doesn’t
contain the word g because of the path P’
Theorem 2.8. F}, is residually finite.

Proof.
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For a € F}, construct p : (F&,v) — F}, the covering defined before, with
a¢S=m(_ v). Let {v1,...v,}, with v; = v, be the vertices of I'. Then,
define recursively a sequence of coverings p; : (I';, w;) — Fy, as follows:

(F17w1) - (Fa7v)7 (Flawl) - C(wi_l,vi)((ri—luwi—l) X (Fluvi))

and

P1=Ds Pii=Pic1 X P1Cy, 0
where w;_; is the distinguished vertex of I';_; and C(y,_, »,) is the connected
component containing (w;_1,v;). Then, we have that

pl(ﬂ'l(Flawl)) =S, pi<771(riawi>> = pifl(ﬂl(riflawifﬁ) ﬂpl(ﬂl(rl,%)) =

pr(mi(Ticy, wiy)) N PSP
where P; is the reduced path from v to v;. And finally,
pu(m(Tp,wy)) = SN PSP N...N PSP, NnP,SP, .

We have already seen that every connected component of the product of two
coverings is a covering as well, so (I',, w,) is a covering. Thus the fundamen-
tal group induced by (I',,w,) is the intersection of all the conjugates of S:
we have as many conjugates as cosets of S, and using the previous section
S has a finite number of cosets since I' has finitely many vertices. Then S
is normal. On the other hand, using previous section again, p,,(m (I'y, wy,))
is of finite index because I',, has a finite number of vertices. Finally, since
a ¢ p1(m(T1,w1)), a & pu(m (T, wy)), and then p, (7 (T, w,)) is a normal
subgroup of finite index and not containing a. [

2.7 The basis problem

One could wonder whether, like in linear algebra, given m generators of a
subgroup of rank k, with m > k, there exists a subset of this generators of
cardinality k, generating the same subgroup. In other words, if for any finite
A set of elements of F,, we could find a free subset of A generating the same
subgroup as A. That is in general not possible, and, in fact, we will show an
example where an arbitrary large number of elements generates a subgroup
of rank 2 but, if we delete just one of the elements, the remaining elements
don’t generate the same subgroup.
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Example 2.4. Consider the labeled graph:

>O o> O——>0———0

>O

Forn > 3 we consider the previous graph, with n the number of edges in
the base of the left triangle. To compute generators of the induced fundamen-
tal group of this graph, consider the following maximal tree:

O/ |
J b
b
/b
o 0 o0 o0o—0
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With this tree the generators are:

{aba™"} U {a'ba b7 ta "V 22 U {a" thab a0 e DU

{anflbaflbanbflaf(nfl)}
Thus, it has n generators. But now, observe that the two edges incident

to the base vertex are inadmissible. Once we have identified them we will get
a new pair of inadmissible edges and finally the triangle will collapse to a

line:
b b b af
& B8

a

The loop labaled by a on the right and the adjacent edges labeled by a are
wmadmassible edges also, so we can apply more foldings:

b
SC T e

Finally, since we have a double loop in the same vertex, all the edges of
the graph collapse in the rose graph Rs, so the elements above generate Fy.
Now, suppose we erase one of those elements. This is equivalent to erasing
one of the edges of the base of the triangle or the egde labeled by b on the
right. But then, the chain of foldings would stop just where the edge has been
erased: the triangle woudn’t collapse in the line graph and then we wound’t
get Ry. Thus, we have an arbitrarily large set of elements that generates Fy
but the set minus any element doesn’t generate Fy.

a
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