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Abstract

We say a group is rigid if its decomposition as a graph product of groups is
essentially unique. This property is known to fail in general. In this paper, rigidity
is proved when vertex groups satisfy: 1. Serre’s (FA) property, 2. are well behaved
under direct products (in a sense which must be precised).

1 Definitions and notation.
We start fixing some terminology about graphs and graph products (sections 1.1 and 1.2).
Afterwards we formally introduce and state the problem of rigidity (sections 1.3 and 1.4).
There, we also provide a quick overview of the most important known results on this
problem. Finally, section 1.5 is devoted to make a quick introduction to Bass-Serre theory,
focused on groups which satisfy the (FA) property.

1.1 Graphs
We start this section providing the most elemental definitions of graph theory. Next the
modular expansion of a graph is defined. This last notion will prove to be natural when
studying rigidity of graph products of groups.

DEFINITION 1. A graph X is a tuple (V (X),E(X)) with V (X) 6= /0, and E(X)⊆V (X)×
V (X) such that (v,u) ∈ E(X) if and only if (u,v) ∈ E(X).

Usually V (X) and E(X) are called the vertex and the edge set of the graph, respectively.
It is common practice to denote the cardinality of V (X) by |X |. The graph is called finite
if |X | is finite. Two vertices v and u ∈ V (X) are said to be adjacent, or connected, if
(v,u) ∈ E(X). Given an edge (v,u) ∈ E(X), then (u,v) is said to be its inverse edge.
Edges will sometimes be denoted by single roman letters, for example e. If, for every pair
of vertices v and u ∈V (X), we have (v,u) ∈ E(X), then X is said to be complete.

DEFINITION 2. Let X be a graph, and v ∈ V (X) a vertex such that (v,v) ∈ E(X). Then
the edge (v,v) is called a loop.
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DEFINITION 3. Let X and Y be two graphs, and f an application f : V (X)→V (Y ). Then
f is called a graph morphism if, for every pair of different vertices v, u ∈V (X) such that
f (v) 6= f (u), we have ( f (v), f (u)) ∈ E(Y ) if and only if (v,u) ∈ E(X).

Remark. Sometimes a graph morphism is only required to preserve the adjacency of adja-
cent vertices. That is, ( f (v), f (u)) ∈ E(Y ) whenever (v,u) ∈ E(X) (even if f (u) = f (v),
in which case a loop is formed). Since we shall not need this kind of application, we will
stick to the more restrictive definition we just introduced.

As usual, a graph morphism f is called a graph monomorphism, epimorphism, or isomor-
phism if f is injective, exhaustive, or bijective, respectively.

DEFINITION 4. Let X and Z be two graphs. Then Z is said to be a full subgraph of X if
there exists a graph monomorphism f : V (Z) ↪→V (X).

A full subgraph isomorphic to a complete graph is called a clique.

DEFINITION 5. Let n be an integer greater or equal to 1. An n-cycle Cn is a graph consist-
ing of n vertices, V (Cn) = {v1, ...,vn}, and edges E(Cn) = {(v1,v2), ...,(vn−1,vn),(vn,v1)}
and its inverses. Similarly, an m-path Pm, m ≥ 1, is a graph with n vertices, {v1, ...,vn},
and edges {(v1,v2), ...,(vn−1,vn))} together with its inverses.

Remark. By the way we have defined our concepts, there do not exist 2-cycles. A loop
(v,v), together with v, is a 1-cycle.

DEFINITION 6. A graph X is said to be connected if, for every two vertices v, u ∈V (X),
there exists an integer n≥ 1 and an n-path Pn with vertices {w1, ...,wn} such that v = w1
and u = wn. In this case, v and u are said to be connected by Pn.

DEFINITION 7. A graph X is said to be a tree if it is connected and there is no n≥ 1 such
that Cn is a full subgraph of X .

Note that, if X is a tree, then for every pair of vertices from V (X) there is a unique path
connecting them.

DEFINITION 8. Given a graph X , a full subgraph induced by a subset M of its vertices is
called a module if, for every vertex v ∈ X −M, v is adjacent to some vertex u ∈M if and
only if it is adjacent to every vertex in M. M is said to be trivial if it consists of a single
vertex or if it is equal to the whole X . X is said to be prime if all its modules are trivial.

Given a graph X and a module M in it, there is a natural graph epimorphism:

[]M : X � X/M

This epimorphism consists in replacing the module M by a single vertex v(M), and con-
necting v(M) to another vertex w ∈ V (X)−V (M) if some vertex in M (and hence all) is
adjacent to w. This is clearly well defined and a graph epimorphism.

DEFINITION 9. Let X be a graph with n vertices {v1, ...,vn}, and Y = (Y1, ...,Yn) an n-
tuple of graphs. Suppose the vertices of Yi are {ui1, ...,uiti}. Then the modular expansion
of X with respect to Y , X ◦Y , is the graph obtained from X by replacing each vertex vi
by the graph Yi, and connecting ui j with usr if and only if vi and vs were adjacent in X (see
the next figure).
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Clearly, the modular expansion X ◦Y contains Y1, ..., Yn as disjoint modules, and the
following sequence of epimorphisms is well defined:

X ◦Y
[]Y1−−→ (X ◦Y )/Y1

[]Y2−−→ ...
[]Yn−−→ X

The reader is refered to [7], [15] for more information on modules.

1.2 Graph products of groups.
In this section we introduce the notion of a graph product of groups, together with some
fundamentl results which will be required later at some point.

When talking about graph products of groups, we will always assume graphs are finite
and without loops, and vertex groups are nontrivial and finitely generated.

DEFINITION 10. Let G =(G1, ...,Gn) be an n- tuple of (nontrivial and finitely generated)
groups, and X a (finite) graph (without loops) with n vertices. Then XG = X(G1, ...,Gn)
will denote the graph product of the groups G1, ..., Gn with respect to the graph X . This is
the group obtained when taking the quotient of the free product G1 ∗ ...∗Gn by the normal
clousure of the set

{[Gi,G j]|vi ∼ v j}

where [Gi,G j] = {[a,b]|a ∈ Gi,b ∈ G j}, and [a,b] = aba−1b−1.

In other words, the graph product of the groups G1, ..., Gn, associated to the vertices v1,
..., vn, in X is the group obtained from their free product once we allow to commute all
pairs of elements which lie in groups corresponding to adjacent vertices.

It is assumed that the group Gi corresponds to the i-th vertex. In addition, given a vertex
v ∈ V (X), we will write Gv to denote the vertex group corresponding to v. Sometimes
we will use the notation XG even when the number of vertices n in X is not equal to the
number m of groups in the tuple G . In this case, if n < m, XG will mean X(G1, ...,Gn),
and, if n > m, XG will mean X(G1, ...,Gm,1, ...,1). Note that the latter is isomorphic
to X ′G , where X ′ is obtained from X by removing its last n−m vertices (and the edges
incident to them).

Given a graph product XG with V (X) = {v1, ...,vn}, and Z a full subgraph of X with
V (Z) = {vi1, ...,vim}, we make the convention that ZG denotes Z(Gi1, ...,Gim). The fol-
lowing proposition, which is of common usage, assures that ZG is canonicaly embedded
in XG .
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PROPOSITION 1 (cf. [16], Theorem 3.2). Let XG be a graph product of groups, and Z
a full subgraph of X. Then the subgroup of XG generated by {Gi|vi ∈ Z} is canonically
isomorphic to ZG .

EXAMPLE 1. Let C be a clique in a graph X with vertices V (C) = {v1, ...,vt}, and
G an |X |-tuple of groups. Then the group G1× ...×Gt is canonically isomorphic to
C(G1, ...,Gt), and canonically embedded in XG .

Given a graph X and a group G, XG will denote the graph product XG , where G =
(G, ...,G). For example, any right angled Artin group can be written as XZ for some
graph X , and any right angled Coxeter group as XZ2.

DEFINITION 11. We will say that a graph product of groups is trivial if its corresponding
graph has only one vertex (recall that we do not allow trivial groups on the vertices,
otherwise a trivial graph product of groups would be a graph product with associated
graph having either one single vertex or trivial groups on the vertices, except by one
vertex). A group will be called graphologically indecomposable if it cannot be expressed
as a nontrivial graph of groups.

DEFINITION 12. Let x be an element in XG , then we can write x = g1...gt with every
gi belonging to a vertex group, say G ji . The elements gi will be called syllables and the
expression g1...gt a syllable form. The positive integer t is said to be the length of the
syllable form. We will say that the vertex v ji appears in the expression g1...gt .

DEFINITION 13. Let x be an element in XG , and x = g1...gt a syllable form of x. If its
lenght t is minimal among all syllable forms for x, then we say that g1...gt is a normal
form for x.

THEOREM 1 (NORMAL FORM THEOREM.). Given any syllable expression g1...gt of an
element x∈XG , we can reach a normal form of x using only combinations of the following
movements:

1. Permute gi with gi+1 if they belong to adjacent groups.

2. Melt gi with gi+1, if they belong to the same group G j, into a single element of the
group G j.

3. Erase any gi if it is the identity element.

Morevoer, if we define supp(x) as the set of vertices appearing in a particular normal
form for x, and link(x) as the set of vertices connected to every vertex in supp(x), then
supp(x) and link(x) are well defined: they do not depend on which normal form for x
is chosen. Moreover, a normal form for x is unique up to movements of type 1, and the
vertices in supp(x) must appear in any expression g1...gk of x, normal or not.

COROLLARY 1. Let x ∈ XG be an element in a graph product of groups, and suppose x
admits two different syllable forms:

x = a1...ar = b1...bs

Let A and B denote the set of groups appearing in the first and second expression of x,
respectively. Then supp(x)⊆A ∩B.
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DEFINITION 14. Let XG be a graph product of groups, and S ⊆ XG a subset. Then
supp(S) is defined to be:

supp(S) =
⋃
x∈S

supp(x).

It is clear that, with the above notation, if S⊆ T ⊆ XG , then supp(S)⊆ supp(T ).

PROPOSITION 2. Let G = (G1, ...,Gn), and H = {H1, ...,Hn} be two n-tuples of groups
such that Hi �Gi for all i. Let X be a graph with n vertices and denote the normal clousure
of XH ≤ XG by << XH >>. Then;

XG / << XH >>∼= X(G /H ),

where G /H = (G1/H1, ...,Gn/Hn).

Proof. Let ι : XG � X(G /H ) be the canonical epimorphism consisting in adding the
relations

⋃
i Hi (eg, ι is the natural epimorphism arising when one takes the quotient of

XG by the normal clousure of
⋃

i Hi). Then the kernel of ι is <<
⋃

i Hi >>, which is also
the normal closure of <

⋃
i Hi >, eg, kerι =<< (<

⋃
i Hi >) >>, but, by proposition 1,

XH =<
⋃

i Hi >.

1.3 Modules and different graph product decompositions.
Given a graph product, XG , one can naturally obtain another isomorphic graph product
of different groups, with respect to different graphs, in the following two ways:

1. Let M be a nontrivial module in X , and denote X ′ the graph obtained from X by
contracting M into a vertex. We can suppose the vertices of M are the first t vertices
in X . Then the following is clear;

X(G1, ...,Gn)∼= X ′(M(G1, ...,Gt),Gt+1, ...,Gn)

2. Suppose G1 can be expressed as a nontrivial graph product of groups:

G1 = Y (H1, ...,Hr)

Then the following is also clear;

XG ∼= (X ◦ (Y,v2, ...,vn))(H1, ...,Hr,G2, ...,Gn),

where vi means a graph with a single vertex vi.

Remark. One could try to define some kind of normal form for a graph product, consisting
in applying transformations of type 2, until no vertex group is nontrivially graphologically
decomposable. In that case, however, it should be proved that the process ends at some
point.
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1.4 Rigidity.
The question this paper deals with is that of whether a graph product decomposition is
unique up to the transformations described above. One of the first results on rigidity, and
probably the most known, is Drom’s, [6], in which right angled artin groups are shown
to be rigid. This result was sharpened by Laurence, [14]. Another first result was given
by Green on graph products of finite indecomposable cyclic groups, [8]. Later, in [16],
Radcliffe probably uses the term rigid for the first time, and proves that, when all vertex
groups are finite and indecomposable as direct products, then the graph product is rigid.
Finally, in [9], Gutiérrez and Piggot extend Drom’s and Green’s result by proving rigidity
for graph products of abelian groups.

Rigidity for general graph products of groups is known to be false. Indeed, Ruth Green,
in her thesis [8], where the notion of graph product is first introduced, wonders about
general rigidity, and provides the following construction from [13] as a negative answer:

PROPOSITION 3. Consider the following groups:

A =< a1,a2|a1
2 = a2

2 >

B =< b1,b2|b1
3 = b2

3 >

C =< c1,c2,c3,c4|c1
2 = c2

2 = c3
3 = c4

3 >

D =< d >

Then, A×B ∼=C×D, but the four groups are graphologically indecomposable and A, B
are not isomorphic to C or D.

1.5 Groups acting on trees.
In this section we introduce the theory of groups acting on trees without inverting any
edge. This is commonly known as Bass-Serre theory. It was developed by Jean-Pierre
Serre in 1970’s and first introduced in his monograph Trees, [18], which was written in
collaboration with Hyman Bass. Nowadays it is a common and important tool in group
theory. The exelent introductory book by Bogopolski, [3], deals neatly with the vast ma-
jority of concepts and results we will be using. The classical but more advanced books by
Serre, [18], and Dicks and Dunwoody, [5], are also good references.

We start the section with basic definitions, followed by the statement of the two funda-
mental results in Bass-Serre theory, (theorems 2 and 3). Afterwards we study groups
which cannot be expressed as a nontrivial fundamental group of a graph of groups (in a
sense which must be precised), and provide a result which will prove to be key in the
following sections, (propositions 5).
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Before starting, recall that the edges of a graph X can be denoted either by ordered pairs
of vertices, (v,u), or by a single roman letter e. The nature of the concepts this section
deals with makes sometimes convenient to adopt the second kind of notation. In this case,
given an edge e = (v,u) ∈ E(X), ē, α(e) and ω(e) will denote, respectively, the inverse
edge (u,v), the initial vertex v, and the final vertex u.

Remark. When talking about graph products of groups, loops on the vertices were for-
bidden. It is, however, not the case in Bass-Serre theory, where they play an important
role.

DEFINITION 15. Let X be a graph (possibly with loops) and G a group. We say that G
acts on the graph if there exists an action of G on the vertex set V (X), G×V (X)→V (X),
(g,v) 7→ gv, such that, for all g∈G, the application µg : V (X)→V (X) defined by µg(v) =
gv is a graph automorphism. This action is said to be without inversion of edges if, for
every edge (v,u) ∈ E(X), one has (gv,gu) 6= (u,v) for all g ∈ G.

DEFINITION 16. Given a graph X , a group G acting on it, and a vertex or edge x ∈
V (X)∪E(X), the stabilizer subgroup of x is defined to be the following set;

StG(x) = {g ∈ G|gx = x}

DEFINITION 17. A graph of groups (G ,X) consists of a connected graph X (possibly
with loops), a vertex group Gv for every vertex v ∈ V (X), an edge group G(v,u) for each
edge (v,u)∈E(X), and group monomorphisms αv,u : G(v,u) ↪→Gv whenever (v,u)∈E(X).
We require in addition that G(v,u) = G(u,v).

Let (G ,X) be a graph of groups, and let T be the set {te|e ∈ E(X)}, where each te is a
formal element corresponding to an edge in X . Let G be the free product of the groups
{Gv|v ∈V (X)} and the free group with basis T , and let N be the following set:

N := {te−1
αe(g)te (αē(g))

−1 , tetē−1|e ∈ E(X) and g ∈ Ge}

We will denote the factor group of G by the normal clousure of N by F(G ,X).

DEFINITION 18. Let (G ,X) be a graph of groups, and T a maximal subtree of the graph
X . The fundamental group π1(G ,X ,T ) of the graph of groups (G ,X) with respect to the
subtree T is the factor group of F(G ,X) by the normal clousure of the set {te|e ∈ E(T )}.

Given a graph of groups (G ,X) and two maximal subtrees T1 and T2 of X , it can be shown
that π1(G ,X ,T1) ∼= π1(G ,X ,T2) (cf. [3], Theorem 16.5). Bearing this in mind, we will
often speak about the fundamental group π1(G ,X ,T ) without specifiying anything else
about T .

EXAMPLE 2 (Amalgamated free products). Let G and H be two groups with distin-
guished isomorphic subgroups A ≤ G and B ≤ G. Fix an isomorphism φ : A→ B. The
free product of G and H with amalgamtion of A and B by the isomorphism φ is the factor
group of G∗H by the normal clousure of the set {φ(a)a−1|a ∈ A}. Whenever there is no
risk of ambiguity, this product will be denoted by G∗A H without any mention of B or φ .
Informally speaking, G∗A H is the group obtained from G∗H when identifying A and B.
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In case A = G or B = H, G ∗A H will be called a trivial amalgamated product. It turns
out to be that G∗A H is canonically isomorphic to the fundamental group of the graph of
groups (G ,Y ), where Y consists of two diferent vertices v, u, and two edges (v,u), (u,v),
with Gv = G, Gu = H, G(v,u) = G(u,v) =C, where C is a group isomorphic to A and B, and
monomorphisms α(v,u)(C) = A, α(u,v)(C) = B.

We will omit the proof of the following three results, which can be found in [3], Theorem
16.10, Theorem 18.2, and Theorem 18.5, respectively.

LEMMA 1. Given a graph of groups (G ,X), and a vertex or edge group Gx, the homo-
morphism i : Gx→ π1(G ,X ,T ) defined by i(g) = g is injective. In other words, vertex and
edge groups are canonically embedded in the fundamental group of a graph of groups.

THEOREM 2. Let G = π1(G ,X ,T ) be the fundamental group of a graph of groups (G ,X)
with respect to a maximal subtree T . Then the group G acts without inversion of edges on
a tree Y , called the Bass-Serre tree of G, such that the following holds:

1. The factor graph Y/G is isomorphic to the graph X .

2. For every vertex v ∈ V (Y ) and edge e ∈ E(Y ), the stabilizers StG(v), StG(e) are
conjugate to the canonical images of the vertex and edge groups in G , respectively.

The following is the converse of the previous result. Usually it is stated in much more
precise terms. We provide a simpler version which is strictly fited to our purposes.

THEOREM 3. Let a group G act without inversion of edges on a tree Y . Then there exists
a graph of groups (G ,X) (X may have loops) such that:

1. For every x ∈ V (X)∪ E(X), Gx = StG(y(x)) ⊆ G for some y(x) ∈ V (Y )∪ E(Y ).
Morevoer, y(x) ∈V (Y ) if and only if x ∈V (X).

2. There exists a canonical isomorphism from G onto the group π1(G ,X ,T ). This
isomorphism extends the identity isomorphisms StG(y(x))→ Gx ⊆ π1(G ,XT ), x ∈
V (X).

COROLLARY 2. Let G = π1(G ,X ,T ) be a fundamental group of a graph of groups
(G ,X), and H a subgroup of π1(G ,X ,T ). Then H is isomorphic to the fundamental
group of a graph of groups (H ,Z), with vertex and edge groups conjugate to sub-
groups of the groups in G . That is, for every z ∈ V (Z)∪ E(Z), there exists g(z) ∈ G
and x(z) ∈ V (X)∪E(X) such that Hz = g(z) ¯Gx(z)g(z)−1, where ¯Gx(z) is a subgroup of
Gx(z). Moreover, x(z) ∈V (X) if and only if z ∈V (z).

Proof. By theorem 2, G acts on a tree Y without inversion of edges, and the stabilizers of
this action are conjugates of the groups in G . Since H is a subgroup of G, it acts also on
Y without inversion of edges. It is easy to see that, for every y ∈V (Y )∪E(Y ) there exists
an element g ∈ G and x ∈V (X)∪E(X) such that;

StH(y) = H ∩StG(y) = H ∩gGxg−1 ⊆ gGxg−1

Now the assertion follows from theorem 3.
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DEFINITION 19. Let G be a group, and X a graph on which G acts. The action is said
to fix a point if there is a vertex v ∈V (X) (the fixed point) such that gv = v for all g ∈ G.
Equivalently, if Gv := {gv|g ∈ G}= v.

DEFINITION 20. A group G is said to satisfy the (FA) property if every action of G on a
tree without inversion of edges has a fixed point.

Next we provide some examples and non-examples of groups satisfying the (FA) property.

1. Finite groups satisfy the (FA) property (cf. [3], corollary 2.6).

2. The free group Fn of rank n≥ 1 does not satisfy the (FA) property, for it acts without
inversion of edges and without fixed points on its Cayley graph. In particular, Z
does not satisfy the (FA) property.

3. Any finitely generated torsion group satisfies the (FA) property (a torsion group is
one in which every element has finite order). [18].

4. Satisfying the (FA) property is closed under extensions, under taking quotients, and
under taking subgroups. Also, if a group G acts without inversion of edges on a
tree, and there exists a finite index subgroup H ⊆ G satisfying the (FA) property,
then G satisfies it too, [18].

5. SL(n,Z) and Aut(Fn) satisfy the (FA) property if n≥ 2 (cf. [18], [4], respectively).

6. Any group satisfying Kazhdan’s property (T) satisfies the (FA) property (cf. [19]).

THEOREM 4 (cf. [18]). Let G be a group, and (G ,X) a graph of groups such that there
exists an isomorphism φ from G into π1(G ,X ,T ). Then G satisfies the (FA) property if
and only if X = T and there exists a vertex v ∈V (G) such that φ(G) = Gv.

Proof. We only outline the proof. It is clear, from theorem 2, that φ(G) is isomorphic
to some vertex group Gv, namely, one corresponding to a fixed vertex. Now, X must
be a tree, because if it had some embedded n-cycle, Cn, with E(Cn) = {e1, ...,en}, then
the element te1 ...ten would be an element in φ(G) not contained in Gv (see [18] for more
details).

COROLLARY 3. Let G = π1(G ,X ,T ) be a fundamental group of a graph of groups
(G ,X), and H a subgroup of G satisfying the (FA) property. Then H is a subgroup of
the conjugate of some vertex group in (G ,Y ).

Proof. It follows immediately from corollary 2 and theorem 4.

It is important to remark that, in the previous corollary, H is not only isomorphic to a
subgroup of the conjugate of some vertex or edge group, but a subset of it (it is embedded
in it by the identity morphism). This is crucial for our purposes.
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LEMMA 2. Let A and B be two groups such that A×B acts on a tree X without inversion
of edges. Suppose there exists vertices v and u∈V (X) fixed by A and B, respectively. Then
there exists a vertex w ∈V (X) fixed by A×B. (v, u, and w are not necessarily different.)

Before starting the proof we make the following definition: for any two vertices v and u
in a connected graph, l(v,u) will denote the minimum integer n such that there exists a
path Pn connecting v and u, minus one.

Proof. We can suppose l(v,u) is minimal among the set {l(x,y)|Ax = x,By = y,x,y ∈
V (X)}. We can also assume v and u are two different vertices, for if v = u then clearly
A×B fixes v. Hence suppose l(v,u)≥ 1 and let P be the unique path connecting v and u
(recall that trees are connected graphs).

P = (x1,x2, ...,xn−1,xn)

Where x0 = v and xn = u.

Now take any b ∈ B, b 6= 1, and consider the path bP = (bx1,bx2, ...,bxn). Since bxn = xn,
there exists a unique i such that bx j = x j for all j ≥ i, and bx j 6= x j for all j < i. We claim
that i = 1. If the claim was true, then b would fix v. Since b can be any element in B, B,
together with A, would fix v, and hence A×B would fix v.

Next the claim is proved. Take any a ∈ A and consider the path aP. As before, there
exists a unique t such that aP = (x1,x2, ...,xt−1,axt , ...,axn) with ax j = x j for all j ≤ t
and ax j 6= x j for all j > t. Observe that abv = bv and abu = au. Hence n−1 = l(v,u) =
l(ab · v,ab · u) = l(b · v,a · u) = i+(n− t)+ |t − i|, from which it is deduced that t ≥ i.
Hence, any a ∈ A fixes xi, and, by the minimality of l(v,u), it follows that i = 1.

Remark. Several alternative proofs of this previous lemma can be derived from stronger
results in, for example, [18], and [3].

PROPOSITION 4. Let A and B be two groups. Then A×B satisfies the (FA) property if
and only if both A and B satisfy it too.

Proof. First assume that both A and B satisfy the (FA) property, and let X be a tree on
which A×B acts without inversion of edges. In particular, both A and B act on X without
inversion of edges, and therefore there exists two vertices v and u ∈ X such that Av = v
and Bu = u. Now the previous lemma tells us that A×B fixes at least one vertex of X .
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Conversely, assume A× B satisfies the (FA) property, and let A act on a tree without
inversion of edges, (a,v) 7→ a · v. The action of A×B on X defined by (ab,v) 7→ ab∗ v =
a · v is a well defined action without inversion of edges, which extends the action of A on
X . Since A×B fixes a vertex, A fixes it too.

2 Rigidity for graph products of groups satisfying the
(FA) property.

In this section we prove rigidity for graph products of groups satisfying the (FA) property.
The key step is lemma 5, in which an isomorphism between such graph products is shown
to carry bijectively maximal cliques into maximal cliques (in a sense which must be pre-
cised). The remainding of the proof studies the behavior of this bijection when making set
operations with maximal cliques, and, with the help of a key observation from [16], we
end up seeing that the isomorphism carries nicely some maximal modules into maximal
modules. At this point the result follows easily.

The following lemma will only be used during the proof of lemma 5.

LEMMA 3. Let XG be a graph product of groups and C, D two cliques in X such that,
for some g ∈ XG , CG ⊆ gDG g−1. Then CG ⊆ DG .

Proof. Taking supports (see section 1, definition 11), we have;

V (C) = supp(CG )⊆ supp(g)∪ supp(DG ) = supp(g)∪V (D).

First of all observe that, if V (C)⊆V (D), then clearly CG ⊆ DG .

Now suppose there is a vertex v ∈ V (C)−V (D). For any 1 6= x ∈ Gv we have a syllable
form, a1...ar, such that;

x = ga1...arg−1

with supp(ai) ∈ V (D). As a consequence of the normal form theorem, and since v /∈
supp(a1...ar), v must lie in supp(g), and all the syllables gi in g = g1...gt (normal form)
such that supp(gi) = v can only cancel with syllables inside g or g−1 with support also
equal to v. However, there is an even number of such syllables, counting among g and
g−1, and cancellation procedures between them must yield only one such syllable, which
is not possible.

A proof of the following lemma can be found in [8].

LEMMA 4 (cf. [8], Lemma 3.20). Let XG be a graph product of groups. Then, if X is not
a complete graph, XG admits a nontrivial amalgamated product decomposition:

XG = X1G ∗X2G X3G ,
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where X1 is the full subgraph induced by a vertex v and link(v), X2 = link(v), and X3 =
X − v. More precisely, v is a vertex such that V (X) 6= v∪ link(v) (the existence of such
vertex is guaranteed by the fact that X is not complete).

Given a graph X , we will denote the set of its cliques by C(X), and the set of its maximal
cliques by MC(X).

The next lemma is fundamental.

LEMMA 5. Let A and B be n and m-tuples of groups such that, for every i, j, Ai and
B j satisfy the (FA) property, and let X and Y be two graphs with n and m vertices. Let
MC(X) = {C1, ...,Cr}, and MC(Y ) = {D1, ...,Ds}, respectively. Suppose φ : XA → YB
is an isomorphism. Then there exists a bijection f : MC(X)→ MC(Y ) such that CiA is
carried isomorphically by φ onto f (Ci)B.

Proof. First of all suppose Y is not a complete graph. By lemma 4, YB admits a nontrivial
amalgamated free product decomposition:

YB = Y1B ∗Y2B Y3B

Now take a clique from C(X), Ci, and consider the subgroup (CiA )φ ⊆YB. By proposi-
tion 5, (CiA )φ satisfies the (FA) property, and, by corollary 3, since Y1B ∗Y2B Y3B is the
fundamental group of a graph of groups with vertex groups Y1B, Y3B, and edge group
Y2B (see example 1), (CiA )φ is a subgroup of some conjugate of Y1B, or Y3B.

In both cases, if Yi (i = 1,3) is not complete, one can repeat the process until a complete
full subgraph of Y , say K, is reached, obtaining, for some y ∈ YB,

(CiA )φ ≤ y(KB)y−1

So, what we have proved so far is that, for every clique Ci in C(X), there exists a clique
f (Ci) in C(Y ), and an element yi ∈ YB, such that;

(CiA )φ ⊆ yi ( f (Ci)B)yi
−1.

Of course, the same is true for the isomorphism φ−1, so for every clique Di in C(Y ), there
exists a clique g(Di) in C(X) and an element xi ∈ XA such that;

(DiB)φ−1
⊆ xi (g(Di)A )xi

−1

Now, from these two previous considerations, we get;

CiA ⊆ yi
φ−1

( f (Ci)B)φ−1
yi
−φ−1

⊆
(

yi
φ−1

xi

)
(g( f (Ci))A )

(
xi
−1yi

−φ−1
)

(Note this inclusion is a subset inclusion, eg, the first group is set-theoretically contained
in the last one. This is much stronger than simply being isomorphic to a subgroup, and
crucial for our purposes.)

12



So, for every clique Ci in C(X), there exists another clique h(Ci) = g( f (Ci)) also in C(X),
and an element gi ∈ XA , such that;

CiA ⊆ gi (h(Ci)A )gi
−1

Now, by lemma 3, CiA ⊆ h(Ci)A . This implies Ci is a complete subgraph of h(Ci). In
particular, if Ci is a maximal clique from MC(X), then Ci = h(Ci). Moreover, let D be a
clique in MC(Y ) such that f (Ci)⊆ D. Then f (C)B ⊆ DB, and, from;

CiA ⊆ yi
φ−1

( f (Ci)B)φ−1
yi
−φ−1

⊆ yi
φ−1

(DB)φ−1
yi
−φ−1

⊆ s(g(D)A )s−1 =CiA

(where s is some element in YB), we get f (C)B = DB, which implies f (C) = D (The
last equality follows form lemma 3 and the maximality of C). Therefore f is bijective and
maps maximal cliques in MC(X) to maximal cliques in MC(Y ).

DEFINITION 21. Let A = (A1, ...,An) and B = (B1, ...,Bm) be n and m-tuples of groups.
Then {A1, ...,An} ∼=σ {B1, ...,Bm} denotes n = m and that there exists a permutation σ

such that Ai ∼= Bσ(i).

The permutation σ will be omitted whenever it is not relevant.

DEFINITION 22. A family of groups T is said to be rigid with respect to the direct
product if every group G ∈ T is not isomorphic to a nontrivial direct product of groups,
and, for any four groups A, B, C, and D ∈T , the following holds:

A×B∼=C×D⇔{A,B} ∼= {C,D}

A good criterion for identifying rigid families of groups is provided by the following
classical theorem.

THEOREM 5 (Krull-Schmidt, cf. [17], 6.36). Let G be a group satisfying the ascending
chain coindition (every ascending chain of subgroups 1 = H1 ⊆ H2 ⊆ ... is eventually
stationary), and the descending chain condition (every descending chain of subgroups
G = H1 ⊇ H2 ⊇ ... is eventually stationary). Then there is essentially a unique way of
decomposing G as a direct product of directly idnecomposable groups. This meaning that
in case there is a finite number of directly indecomposable groups Ai and B j such that the
following holds:

G∼= A1× ...×An ∼= B1× ...×Bm

then {A1, ...,An} ∼= {B1, ...,Bm}.

As a direct consequence of Krull-Schmidt theorem we have that indecomposable finite
groups form a rigid family of groups with respect to the direct product.

Remark. Indecomposable cyclic groups, finite or not, also form a rigid family with respect
to the direct product. It is interesting to note that Z does not satisfy the descending chain
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condition.

The reader is reffered to the papers by R.Hirshon, [10], [11], [12], for further information
and results regarding such rigid families.

THEOREM 6. Let A and B be n and m-tuples of groups, all of them satisfying the (FA)
property and belonging to a rigid family of groups with respect to the direct product. Let
X and Y be graphs with n and m vertices, respectively. Then there exists an isomorphism
φ : XA →YB if and only if n=m and there exists a graph isomorphism η :V (X)→V (Y )
such that

{A1, ...,An} ∼=η {B1, ...,Bm}.

The following lemmas will be used during the proof of theorem 6.

LEMMA 6. Let C1 and C2 be two cliques in a graph X, and consider a graph product of
groups XG . Then:

(C1∩C2)G = (C1G )∩ (C2G )

Proof. We claim that supp((C1G )∩(C2G )) = supp(C1G )∩supp(C2G ) =C1∩C2. If the
claim is true, then (C1G )∩(C2G )⊆ (C1∩C2)G , and it is easy to see the reverse inclusion.

Next the claim is proved. Any element x in (C1G )∩ (C2G ) admits two syllable forms:
x = a1...at , and x = b1...bt , where ai are syllables in C1, and bi are syllables in C2. Now,
supp(a1...at) = supp(b1...bt), and therefore a normal form for x must be formed with
syllables belonging both to C1 and C2, by corollary 1. Thus supp((C1G )∩ (C2G )) ⊆
V (C1)∩V (C2) = supp(C1G )∩ supp(C2G ). The other inclusion follows easily: for every
vertex v both in C1 and C2, there is an element x in (C1G )∩ (C2G ) such that supp(x) = v,
namely, any element in Gv (which is not trivial by hypotesis).

LEMMA 7. Let C1 and C2 be two maximal cliques in a graph X, and A , B two n and
m-tuples of groups satisfying the (FA) property. Then any isomorphism φ : XA → YB
carries (C1∩C2)A isomorphically onto ( f (C1)∩ f (C2))B, where f is the induced bijec-
tion betweem maximal cliques given by lemma 5.

Proof. It is immediate from lemma 5 and 6:

((C1∩C2)A )φ = (C1A ∩C2A )φ = (C1A )φ ∩ (C2A )φ =

= f (C1)B∩ f (C2)B = ( f (C1)∩ f (C2))B.

LEMMA 8. Let XA be a graph product of groups, and Z1, Z2 be two full subgraphs in
X. Then;

(Z1−Z2)A = Z1A / << (Z1∩Z2)A >>

As a consequence, let A and B be n and m-tuples of groups satisfying the (FA) property.
Let φ be an isomorphism between them, and f the bijection between maximal cliques
given by lemma 5. Let also C1, ... Ct and D1, ...,Dr be some maximal cliques in X. Then;
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(((⋂
Ci

)
−
(⋃

Di

))
A
)φ

=
((⋂

f (Ci)
)
−
(⋃

f (Di)
))

B

Proof. The first part follows from proposition 2 when taking H = (Gi1, ...,Git ), where
{vi1 , ...,vit}=V (Z1∩Z2).

For the second part, write Z1 :=
⋂

Ci, Z2 :=
⋃

Di, Z1
φ =

⋂
f (Ci), and Z2

φ =
⋃

f (Di).
Now observe that an isomorphism φ induces a natural isomorphism

φ̄ : Z1A /<< (Z1∩Z2)A >>→ (Z1A )φ/<< ((Z1∩Z2)A )φ >>=Z1
φB/<< (Z1

φ ∩Z2
φ )B>> .

We have, therefore, the following sequence of isomorphisms:

(Z1−Z2)A →Z1A /<< (Z1∩Z2)A >>
φ̄−→ Z1

φB/<< (Z1
φ ∩Z2

φ )B>>→ (Z1
φ−Z2

φ )B

x 7→ x << (Z1∩Z2)A >>7→ xφ << (Z1
φ ∩Z2

φ )B >>7→ xφ

Hence, φ carries (Z1−Z2)A isomorphically into (Z1
φ −Z2

φ )B, as claimed.

LEMMA 9. Let XA and YB be two graph products of groups, φ an isomorphism between
XA and YB, and f a bijection f : X → Y . Suppose that, for every vertex v ∈ V (X), we
have (Av)

φ = B f (v). Then f is a graph isomorphism.

Proof. It suffices to check that f preserves adjacencies. Let v, u be two vertices in V (X),
and gv, gu two elements from Av, Au, respectively. Then, since gv

φ ∈B f (v) and gu
φ ∈B f (u);

(v,u) ∈ E(X)⇔ [gv,gu] = 1⇔ [gv,gu]
φ = [gv

φ ,gu
φ ] = 1⇔ ( f (v), f (u)) ∈ E(Y )

The following idea, consisting in considering maximal modules which are complete graphs
(or maximal complete modules), is a key step which can be found in [16].

LEMMA 10. Let X be a graph, and let C be a set of maximal cliques in X such that

K :=

( ⋂
C∈C

C

)
−

 ⋃
C∈MC(X)−C

C

 6= /0.

Then K is a maximal complete module in X.

Conversely, suppose M is a maximal complete module in X. Denote by MMC the set of all
maximal cliques containing M. Then,

M =

( ⋂
C∈MMC

C

)
−

 ⋃
C∈MC(X)−MMC

C

 .
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Proof. First we prove that the full subgraph K =
⋂

C∈C C−
⋃

C∈MC(X)−C C 6= /0 is a com-
plete module. The key observation for the whole proof is that every maximal clique either
contains K or intersects K trivially. Indeed, if C is a maximal clique in X , then it either
belongs to C , in which case it contains K, or it does not belong to C , in which case it
cannot share any vertex with K by the way we defined it.

Now, K is cearly complete. To see it is a module note the following: for every vertex u
adjacent to some vertex v ∈V (K), there is a maximal clique D containing the edge (v,u).
This clique D intersects K nontrivially and therefore must contain M; in particular, it con-
tains K and thus u is adjacent to every vertex in K.

Now take a maximal complete module M and let C = MMC. We are going to show that,
in this situation, K contains M. Therefore K is nonempty and, by maximality, K = M.
Suppose K does not contain M, so there exists a vertex v ∈ M, and a maximal clique D
not containing M and containing v. Then there exists a vertex u ∈M−D, and, since D is
maximal, D−M 6= /0. Now, for any w ∈ D−M, w is adjacent to v because D is a clique.
Since M is a module and v ∈ M, w is adjacent to every vertex in M, in particular it is
adjacent to u. Therefore the full subgraph induced by D and u is complete, contradicting
the maximality of D. (See Figure).

It remains to see that, for any C such that K 6= /0,K is maximal. Suppose therefore that
M is a maximal complete module containing K. By the previous observations, M is the
intersection of all maximal cliques belonging to MMC minus the union of the remaining
maximal cliques. Equivalently, every maximal clique either contains M or intersects M
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trivially. We claim that C = MMC. Clearly, if the claim is true, then the proof is complete.

To prove the claim, suppose first that C ∈C −MMC. Then C intersects K nontrivially, and
therefore it also intersects M nontrivially. This is a contradiction and hence C ⊆ MMC.
Conversely, if C ∈MMC, then it contains K and thus must belong to C .

Note that the vertices of a graph X can always be partitioned into maximal complete
modules. Indeed, every vertex belongs to a complete module (itself), and therefore to a
maximal complete one, and two such modules never intersect, for otherwise at least one
of them would not be maximal. We will implicitly be using this considerations without
making any mention of them.

LEMMA 11. Let XA and YB be two graph products of groups satisfying the (FA) prop-
erty, and φ an isomorphism betwen them. Let M be a maximal complete module in X.
Then φ carries MA into s(M)B, where s(M) is a maximal complete module in Y . More-
over, s is a bijection between the set of maximal complete modules in X and the set of
maximal complete modules in Y .

Proof. Let f be the bijection between maximal cliques in X and Y given by lemma 5, and
let M be as in the statement. Then, following the notation in the previous lemma,

M =

( ⋂
C∈MMC

C

)
−

( ⋃
C/∈MMC

C

)
Now, by lemma 8,

(MA )φ =

((( ⋂
C∈MMC

C

)
−

( ⋃
C/∈MMC

C

))
A

)φ

=

=

(( ⋂
C∈MMC

f (C)

)
−

( ⋃
C/∈MMC

f (C)

))
B := s(M)B

Since M is nonempty, s(M) is nonempty too, and, by the previous corollary, it is a maxi-
mal complete module in Y .

It remains to see s is a bijection. Since every vertex belongs to a maximal complete mod-
ule, (XA )φ is generated by the set {s(Mi)B|Mi ∈MC(X)}, and therefore by the vertex
groups Bv such that v ∈ s(Mi) for some Mi ∈ MC(X). Now, if s was to be not exhaus-
tive, there would be some v ∈ V (Y ) not belonging to any s(Mi), and therefore (XA )φ

would be contained in (Y − v)B, contradicting the fact that φ is exhaustive. Moreover, s
is injective; if not, there would be two maximal complete modules, M1 and M2, such that
s(M1) = s(M2), and two elements g1 and g2 belonging to M1A and M2B, respectively,
such that g1

φ = g2
φ , because φ carries isomorphically MiA into s(Mi)B.

Proof of theorem 6. The implication from right to left is clear. Suppose now that φ is an
isomorphism between XA and YB, and let M(X) be the set of maximal modules of X
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which are complete graphs. Note that every vertex belongs to one and only one such mod-
ule. Let s : M(X)→M(Y ) be the bijection as in the previous lemma. Now consider the
graph products of groups X ′A ′ and Y ′B′ obtained by contracting the modules in M(X)
and M(Y ) as in section 1.3. φ induces a natural isomorphism between X ′A ′ and Y ′B′,
which will still be denoted φ . This isomorphism carries bijectively vertex groups into
vertex groups, so lemma 8 assures that φ induces a graph isomorphism between X ′ and
Y ′.

Thus, what we have seen so far is that there exists a graph isomorphism f : X ′→ Y ′ such
that, if V (X ′) = {s1, ...,st}, and M(X) = {Ms1, ...,Mst}, then φ(MviA ) = M f (vi)B. By
rigidity with respect to the direct product, |Mvi|= |M f (vi)|, and f induces an isomorphism
f̄ between X and Y . This f̄ can be defined in the following way. Take a maximal complete
module Mvi in X , and let v1, ...,vk be its vertices. Let σ be any permutation of k elements.
Suppose the vertices of Ms(vi) are {u1, ...,uk}. Then define f̄ (vi) = uσ(i). This is clearly
well defined and a graph isomorphism. Moreover, {A1, ...,An} ∼= f̄ {B1, ...,Bm}.

We now recover Radcliffe’s result [16].

COROLLARY 4 (Radcliffe, [16]). Any graph product of groups with directly indecom-
posable finite vertex groups is rigid.

Proof. We have already stated that finite groups satisfy the (FA) property. It has also been
seen that directly indecomposable finite groups form a rigid family of groups with respect
to the direct product (as a consequence of theorem 5). The assertion now follows from
theorem 6.

2.1 Comments on the hypothesis.
There are two natural hypotesis when requiring rigidity of a graph product:

1. Vertex groups must be graphologically indecomposable. This is clear and by no
means removable.

2. Vertex groups must belong to a rigid family of groups with respect to direct product.
This is because rigidity for direct products of directly indecomposable groups does
not always hold. One could try to avoid this hypotesis by adding conditions to the
associated graphs. For example, if we only require the graphs not to be complete, is
it strictly necessary that the vertex group belong to a rigid family with respect to the
direct product? This is most likely to have a positive answer: groups will always
have to belong to a rigid family, except when the graphs have no complete maximal
modules with more than one vertex.

Note that groups satisfying the hypotesis in the statement of theorem 6 satisfy 1) and 2) in
the previous enumeration. Indeed, a group satisfying the (FA) property is not isomorphic
to a nontrivial graph product of groups with an uncomplete associated graph, for then it
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would decompose as a nontrivial free amalgamated product. Also, by definition, a group
in a rigid family of groups with respect to direct products is indecomposable as a nontriv-
ial direct product.

It is suspicious that some of the counterexample groups in proposition 4 are nontrivial
amalgamated free products (for axample, A = Z ∗Z Z). (FA) property, however, seems
too much. Probably rigidity could still be assured by requiring vertex groups not to be
amalgamated products, instead of asking (FA) property, or maybe this hypotesis could be
completely dropped (then, of course, one would have to ask for graphologically indecom-
posable groups).

3 Further work.
We are currently working on a variation of the proof presented in this paper. This vari-
ation would allow infinite cylic vertex groups (together with groups satisfying the (FA)
property). The strategy is the same: once we have seen the isomorphism is well behaved
on subgroups generated by maximal cliques, it is easy to infer the remaining part of the
proof. However, this well behavior is much more tricky in this new situation, for the sub-
groups induced by cliques with the group Z in all its vertices can act on trees in a way
that the information about one of the Z’s is completely lost. However, some more subtle
considerations about the decomposition of a graph product as an amalgamated product,
together with a couple of results of Y.Antolin and A. Minasyan, [1], have allowed us to
succesfully deal with maximal cliques with infinite cyclic groups on its vertices, except
when the maximal clique has exactly two vertices. Luckily, some recent considerations
also point towards a posibly effective method for this kind of cliques.

If completed, this new proof would be interesting because it would imply the three men-
tioned results about rigidity, [6], [9], [16]. In particular, it would imply Droms’ theorem
without making any use of the algebras that appear in his paper.
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